

TEST REPORT

Reference	No	: 45	WTF23F10218911N

Applicant.....: Mid Ocean Brands B.V.

Address...... : 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon,

Hong Kong

Manufacturer : 118144

Address.....

Product Name.....: 2x10W wireless speaker

Model No..... : MO2172

Test specification.....: Photobiological safety of lamps and lamp systems

EN 62471:2008

IEC 62471:2006 (First Edition)

Date of Receipt sample..... 2023-10-12

Date of Test..... : 2023-10-12 to 2023-10-27

Date of Issue..... : 2023-10-27

Test Report Form No......: WPL-62471A-01A

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Tested by:

Carry Chen

Approved by:

Finn Yu

Reference No.: WTF23F10218911N Page 2 of 16

0		
V	V	
Y		

	ption	: 2x10W wireless speaker		
Trade Mark		: None		
General remarks	SI of other	TEX LITER WHITE WHITE WE	in the	M. A. A.
"(See remark #)" "(See appended t	refers to a remark table)" refers to a ta	onal information appended to the re appended to the report. able appended to the report. oint) is used as the decimal separa	Mary M	
No decision rule i limit according to	s specified by the s the specification in	for decisions on conformity (decision standard, when comparing the meas that standard. The decisions on co lle acceptance" decision rule, previo	surement resul nformity are m	ade without applying
25°C±5°C.		at voltage 230VAC, 50Hz and at a sovered in this report as below:	stable ambien	t temperature
Item	Model	Ratings	ССТ	Driver
y 39 38	MO2172	220-240VAC, 50/60Hz, 3W	S X	st st
	onducted under lum ried out at model M	ninaire/lamp/LED rating.	y Mr.	EX WALTER WALTER
	i, distance betweet	n lamp and sensor: 200.0 mm.		
α = 0.1000 radiar	<u> </u>		nuite white	Marin Mari W
α = 0.1000 radiar	ulars	n lamp and sensor: 200.0 mm.	rave lamps	□ pulsed lamps
a = 0.1000 radiar Test item partice Tested lamp	ulars	n lamp and sensor: 200.0 mm.		☐ pulsed lamps
α = 0.1000 radiar Test item partice Tested lamp Tested lamp syst	ulars	n lamp and sensor: 200.0 mm. See below continuous w No lamp system		□ pulsed lamps
α = 0.1000 radiar Test item partice Tested lamp Tested lamp syst Lamp classification	emon group	n lamp and sensor: 200.0 mm. See below Continuous w No lamp system		TEK MITEK WALTER
α = 0.1000 radiar Test item partice Tested lamp Tested lamp syst Lamp classification Lamp cap	emon group	n lamp and sensor: 200.0 mm. See below Continuous w No lamp system exempt⊠		TEK MITEK WALTER
α = 0.1000 radiar Fest item partice Fested lamp Fested lamp syst _amp classification _amp cap	em	n lamp and sensor: 200.0 mm. See below Continuous w No lamp system exempt⊠	risk 1□ ri	TEK MITEK WALTER
Test item partice Tested lamp syst Lamp classification Lamp cap	em	n lamp and sensor: 200.0 mm. See below Continuous w No lamp system exempt⊠	risk 1□ ri	TEK MITEK MAITE
Test item partice Tested lamp Tested lamp syst Lamp classification Lamp cap Bulb Rated of the lamp	emon group	n lamp and sensor: 200.0 mm. See below Continuous w No lamp system exempt⊠ See model list ir	risk 1□ ri	TEK MITEK MAITE
α = 0.1000 radian Test item particular Tested lamp Tested lamp system Lamp classification Lamp cap Bulb Rated of the lamp Furthermore many Seasoning of lamp	emon groupking on the lamp	n lamp and sensor: 200.0 mm. See below Continuous w No lamp system exempt⊠ See model list in	risk 1□ ri	TEK MITEK MAITE
α = 0.1000 radiar Test item partice Tested lamp syst Lamp classification Lamp cap Bulb Rated of the lamp Furthermore mark Seasoning of lam Used measurement	em	n lamp and sensor: 200.0 mm. See below Continuous w No lamp system exempt⊠ See model list in None standard	risk 1□ ri	TEK MITEK MAITE

test case does not apply to the test object...... N(/A) (Not applicable)

Possible test case verdicts:

Reference No.: WTF23F10218911N Page 3 of 16

			7	1	7
	~	7	1	7	
1			V		

General produ	ct information:
---------------	-----------------

N/A

	IEC/EN 62471					
Clause	Requirement + Test	Result – Remark	Verdict			
4	EXPOSURE LIMITS	Mr. Apr. Apr.	P			
4.1	General	THE CLIEF MILITER	JOP 3			
NITEK WAS	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure	LIEK WALTER WALTER	ILTE P			
iek white	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds 10 ⁴ cd·m ⁻²	see clause 4.3	P			
4.3	Hazard exposure limits	- LIER WITE WITE	P			
4.3.1	Actinic UV hazard exposure limit for the skin and eye	an and	Р			
MULTER ON	The exposure limit for effective radiant exposure is 30 J·m ⁻² within any 8-hour period	ALTER WALTE WALTE	IL P			
ek whitek	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance, E _S , of the light source shall not exceed the levels defined by:	TEX WALTER WALTER WA	ir Pini			
WALTER	$E_{s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda}(\lambda, t) \cdot S_{UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30 \qquad J \cdot m^{-2}$	WITER WILLER	PK			
INLIEK WA	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by:	MULTER WALTER	ALTE P			
IER WALLE	$t_{\text{max}} = \frac{30}{E_{\text{S}}}$ s	MILLE MALLER MA	Р			
4.3.2	Near-UV hazard exposure limit for eye	E STEP STEP WITE	Р			
MULIEK M	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J·m ⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E _{UVA} , shall not exceed 10 W·m ⁻² .	unties writes unties	P. Marie a			
EK WILTER	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:	of with writing whi	P			
WALTER	$t_{\text{max}} \le \frac{10\ 000}{E_{\text{UVA}}} \qquad \text{s}$	MITER MITER WHITE	P			
4.3.3	Retinal blue light hazard exposure limit	See table 4.2	Р			
TEK MUTT	To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, B(λ), i.e., the blue-light weighted radiance , L _B , shall not exceed the levels defined by:	LEK MUTER MUTER AN				
MULTE	$L_{\rm B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^{6} \qquad \text{J} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$	for $t \le t_{\text{max}} = \frac{10^6}{L_{\text{B}}}$	P			

	IEC/EN 62471					
Clause	Requirement + Test	Result – Remark	Verdict			
WILLER OF	$L_{\rm B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad \qquad W \cdot m^{-2} \cdot \text{sr}^{-1}$	The street with	J. P.			
4.3.4	Retinal blue light hazard exposure limit - small source	the the to	N			
1112 JUL	Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:	iter unite unite	N _A N			
THE THE	$E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 J \cdot m^{-2}$	mer mer m	N			
Mu.	$E_{\rm B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad W \cdot m^{-2}$	MUTTE MUTE MUT	AN N			
4.3.5	Retinal thermal hazard exposure limit	Write Murra	Р 🗥			
itek wate Watek	To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(_{\lambda})$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:	TEK WALTER WALTER	ITER POLITER			
WALTER V	$L_{\rm R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0.25}}$ W · m ⁻² · sr ⁻¹	(10 µs ≤ t ≤ 10 s)	JANE V			
4.3.6	Retinal thermal hazard exposure limit – weak visual stimulus	TEK STEK	US P			
iek vivit K zek	For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L _{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:	Murit Aurite	P P			
WITE I	$L_{IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad \qquad W \cdot m^{-2} \cdot sr^{-1}$	white white whi	P			
4.3.7	Infrared radiation hazard exposure limits for the eye	me me m	Р			
ire uni	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, E _{IR} , over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:	TEK WILTER WILTER	WEEL BURY			
WALTER	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0.75} \qquad W \cdot m^{-2}$	MULTER WHITER WHI	Р			
intité din	For times greater than 1000 s the limit becomes:	aliek miles ancies	P			
TEX WALT	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 100 \qquad \qquad \text{W} \cdot \text{m}^{-2}$	iek whitek whitek	IN THE P			
4.3.8	Thermal hazard exposure limit for the skin	the state of	P			
200	Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to:	Mer Mer M	Р			

	IEC/EN 62471					
Clause	Requirement + Test	Result – Remark	Verdict			
MITEX N	$E_{H} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda}(\lambda, t) \cdot \Delta t \cdot \Delta \lambda \le 20000 \cdot t^{0,25} \qquad J \cdot m^{-2}$	TER TER ST	P			
5	MEASUREMENT OF LAMPS AND LAMP SYSTEMS	The Angelow	Р			
5.1	Measurement conditions	LIER NIER MITER	P.O			
IEK WALTE	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.	EX WHITEK WHITEK	NI EX P			
5.1.1	Lamp ageing (seasoning)	LEK KEK K	N			
W.	Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard.	MULT AND AND	N			
5.1.2	Test environment	William Maria	1 P 0			
LITEK WALT	For specific test conditions, see the appropriate IEC lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations.	THE WALTER WALTER	an ITEX P			
5.1.3	Extraneous radiation	t the their o	P			
WALTER	Careful checks should be made to ensure that extraneous sources of radiation and reflections do not add significantly to the measurement results.	WITEH WILLER WALF	P. P.			
5.1.4	Lamp operation		P			
ing the	Operation of the test lamp shall be provided in accordance with:	ing me	Р			
ie wir	the appropriate IEC lamp standard, or	The Marie of	N N			
t set	the manufacturer's recommendation	4 1	P.			
5.1.5	Lamp system operation	INCITE WALL WA	Р			
NATEK NI	The power source for operation of the test lamp shall be provided in accordance with:	aliek nitek spirk	P			
	the appropriate IEC standard, or	n	Р			
The Whit	the manufacturer's recommendation	TER WITE WALTE	SI PUL			
5.2	Measurement procedure	a start	P			
5.2.1	Irradiance measurements	White Mary M	Р			
- Ker	Minimum aperture diameter 7mm.	at at	P			
11/2 1	Maximum aperture diameter 50 mm.	White Mure Muse	Р			
METER WA	The measurement shall be made in that position of the beam giving the maximum reading.	utek mutek mutek	INLT P			
sit s	The measurement instrument is adequate calibrated.	a at the	P S			
5.2.2	Radiance measurements	ite white man a	P			
5.2.2.1	Standard method	- st set	P			
All.	The measurements made with an optical system.	They were the	Р			

apr	IEC/EN 62471				
Clause	Requirement + Test	Result – Remark	Verdict		
WALLEK W	The instrument shall be calibrated to read in absolute radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument.	UNLIFE WALTER WALT	IK PK		
5.2.2.2	Alternative method	at at all	Р		
	Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements.	et tet steet	V PN		
5.2.3	Measurement of source size	20, 20, 2	Р		
WALTE.	The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source.	White white whi	IN P		
5.2.4	Pulse width measurement for pulsed sources	Will MULL MULL	N		
LIEK WAL	The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value.	TEX WALTER WALTER	M SEL N		
5.3	Analysis methods	the action of the state of	Р		
5.3.1	Weighting curve interpolations	21, 21, 4	P		
White v	To standardize interpolated values, use linear interpolation on the log of given values to obtain intermediate points at the wavelength intervals desired.	see table 4.1	WILL D		
5.3.2	Calculations	July Mun	A P		
IEK WALTE	The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy.	MULTER WALTER	IN THE PAIN		
5.3.3	Measurement uncertainty	LITER OLITER ON	P		
CLIFER	The quality of all measurement results must be quantified by an analysis of the uncertainty.	TEX TEX SITE	k P		
6	LAMP CLASSIFICATION	on my	Р		
LIFE WAL	For the purposes of this standard it was decided that the values shall be reported as follows:	see table 6.1	W LIFE PAR		
WALTER	for lamps intended for general lighting service, the hazard values shall be reported as either irradiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm	ANTIER MUTER M	E WALTER		
Uniter Out	 for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm 	NITER WALTER WALTER	P		
6.1	Continuous wave lamps	TEX LIEK LIEK	PA		
6.1.1	Exempt Group	1/11 1/11 1	Р		
WILLE	In the exempt group is lamp, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:	MATTER WALTER WA	Р		

	IEC/EN 62471					
Clause	Requirement + Test	Result – Remark	Verdict			
ALTER .	 an actinic ultraviolet hazard (E_s) within 8-hours exposure (30000 s), nor 	THE TEX CT	P			
16th 1	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 	ar ar ar	Р			
ist in	 a retinal blue-light hazard (L_B) within 10000 s (about 2,8 h), nor 	in man mu	Р			
Mer	 a retinal thermal hazard (L_R) within 10 s, nor 	The Will W	Р			
MALTEX	 an infrared radiation hazard for the eye (E_{IR}) within 1000 	aliek aliek ani	P. P.			
WEITER ON	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 1000 s are in Risk Exempt Group	OTHER MATER MATER	P. M.L.T.P.			
6.1.2	Risk Group 1 (Low-Risk)		SE N			
ik tek	In this group is lamp, which exceeds the limits for the exempt group but that does not pose:	in with the same	N			
MULTER A	 an actinic ultraviolet hazard (E_s) within 10000 s, nor 	Write Will M	N			
	 a near ultraviolet hazard (E_{UVA}) within 300 s, nor 	A At A	N ⁺			
	 a retinal blue-light hazard (L_B) within 100 s, nor 	WILL MUT. MUT.	N N			
JEK N	a retinal thermal hazard (L _R) within 10 s, nor	At All	.g⊘N			
12 m	 – an infrared radiation hazard for the eye (E_{IR}) within 100 s 	ann m	N			
IEK WILLE	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 100 s are in Risk Group 1.	JUNETRY WALTER	N			
6.1.3	Risk Group 2 (Moderate-Risk)	NITE MITE NA	N.			
OLITEK M	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:	THE THE MET	N-			
State St	 an actinic ultraviolet hazard (E_s) within 1000 s exposure, nor 	at the text	N			
	 a near ultraviolet hazard (E_{UVA}) within 100 s, nor 	in my	N			
	 a retinal blue-light hazard (L_B) within 0,25 s (aversion response), nor 	H WALTER WALTER ON	J N.J			
WALTER	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 	THE MALTER MAN	EX UNINEX			
EN.	 an infrared radiation hazard for the eye (E_{IR}) within 10 s 	A At all	- N			
ilek vil	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 10 s are in Risk Group 2.	est test test	N W			
6.1.4	Risk Group 3 (High-Risk)	me m 1	N			
WALTER	Lamps which exceed the limits for Risk Group 2 are in Group 3.	WALTER WALTER WA	N			
6.2	Pulsed lamps	A St A	Ń			

	IEC/EN 62471				
Clause	Requirement + Test	Result – Remark	Verdict		
40		11 12 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	-71,		
NITEK .	Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s.	Tet Tet ST	N_		
70x 7	A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer.	The tex	N		
SA SU	The risk group determination of the lamp being tested shall be made as follows:	With Mur, Mur	N SV		
i mr.	a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High-Risk)	TENNITE WILL W	N		
White.	 for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group 	White white whi	- TEN		
	 for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission 	VALLE WALTER WALTER	M M M		

Waveler		UV hazard function	Wavelength	UV hazard function
λ, nn		S _{uv} (λ)	λ, nm	S _{υν} (λ)
200	r The	0,030	313*	0,006
205	-20	0,051	315	0,003
210	LITER .	0,075	316	0,0024
215	20, 0,	0,095	317	0,0020
220	Little Mil	0,120	318	0,0016
225		0,150	319	0,0012
230	EL MILLE	0,190	320	0,0010
235		0,240	322	0,00067
240	MALTE	0,300	323	0,00054
245		0,360	325	0,00050
250	ines an	0,430	328	0,00044
254	*	0,500	330	0,00041
255	in and	0,520	333*	0,00037
260	H JEH	0,650	335	0,00034
265	The.	0,810	340	0,00028
270	1.5	1,000	345	0,00024
275	· A V	0,960	350	0,00020
280	*	0,880	355	0,00016
285	70	0,770	360	0,00013
290	LEW MUTE	0,640	365*	0,00011
295		0,540	370	0,000093
297	* WALTE	0,460	375	0,000077
300	1	0,300	380	0,000064
303	*relie w	0,120	385	0,000053
305	1	0,060	390	0,000044
308	rie Mrr	0,026	395	0,000036
310	£ 25	0,015	400	0,000030

Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

^{*} Emission lines of a mercury discharge spectrum.

Wavelength nm	Blue-light hazard function B (λ)	Burn hazard function R (λ)		
300	0,01	THE REPORT OF		
305	0,01	The said of the		
310	0,01	4)		
315	0,01	Alt Alt OF AN		
320	0,01	by the the		
325	0,01			
330	0,01			
335	Ø 0,01 W			
340	0,01	L At Att Att of		
345	0,01	With the William		
350	0,01			
355	0,01	THE STEE STEE STEE		
360	0,01	are any any any		
365	0,01	and the second		
370	0,01	ite with the same		
375	0,01	- 14 A		
380	0,01			
385	0,013	0,13		
390	0,025	0,25		
395	0,05	0,5		
400	0,10	1,0		
405	0,20	2,0		
410	0,40	4,0		
415	0,80	8,0		
420	0,90	9,0		
425	0,95	9,5		
430	0,98	9,8		
435	1,00	10,0		
440	1,00	10,0		
445	0,97	9,7		
450	0,94	9,4		
455	0,90	9,0		
460	0,80	8,0		
465	0,70	7,0		
470	0,62	6,2		
475	0,55	5,5		
480	0,45	4,5		
485	0,40	4,0		
490	0,22	2,2		
495	0,16	1,6		
500-600	10[(450-\lambda)/50]	1,0 👉		
600-700	0,001	1,0		
700-1050	it will also all all a	10 ^[(700-\lambda)/500]		
1050-1150		0,2		
1150-1200	at the the tile all the	0,2.10 ^{0,02(1150-λ)}		

Table 5.4	Summary of the ELs for the	surface of the s	kin or cornea	(irradiance ba	sed values) P
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms of constant irradiance W•m-2
Actinic UV skin & eye	$\mathbf{L} = \mathbf{L} = \mathbf{L} \cdot $	200 – 400	< 30000	1,4 (80)	30/t
Eye UV-A	$E_{UVA} = \sum E_{\lambda} \cdot \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000/t 10
Blue-light small source	$E_B = \sum E_\lambda \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	≤100 >100	< 0,011	100/t
Eye IR	$E_{IR} = \sum E_{\lambda} \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t ^{0,75}
Skin therma	$E_{H} = \sum E_{\lambda} \cdot \Delta \lambda$	380 – 3000	< 10	2π sr	20000/t ^{0,75}

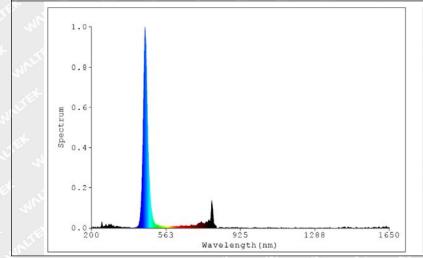

Table 5.5 S	ummary of the ELs for th	e retina (radian	ce based valu	ies)	antil an I Pari
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in terms of constant radiance W•m ⁻² •sr ⁻¹)
Blue light	$L_{B} = \sum L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda$	300 – 700	0,25 - 10 10-100 100-10000 ≥ 10000	0,011•√(t/10) 0,011 0,0011•√t 0,1	10 ⁶ /t 10 ⁶ /t 10 ⁶ /t 100
Retinal thermal	$L_{R} = \sum L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda$	380 – 1400	< 0,25 0,25 – 10	0,0017 0,011•√(t/10)	50000/(α•t ^{0,25}) 50000/(α•t ^{0,25})
Retinal thermal (weak visual stimulus)	$L_{IR} = \sum L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda$	780 – 1400	> 10	0,011	6000/α

Table 6.1 (MO2172) Emission limits for risk groups of continuous wave lamps, α = 0.1000 rad

			4 2	Emission Measurement					
	Action	Symbol	Units	Exempt		Low risk		Mod risk	
	spectr um			Limit	Result	Limit	Result	Limit	Result
Actinic UV	S _{υν} (λ)	Es	W•m ⁻²	0,001	4.77e-04	0,003	ik _{Vir} lie	0,03	n ^{li} vi
Near UV	10-11/6	Euva	W•m ⁻²	0.33	3.22e-04	g+ 33 g+	30th	100	7 ⁶⁷
Blue light	Β(λ)	L _B	W•m ⁻ ² •sr ⁻¹	100	1.27e+00	10000	TEX.	4000000	t - TEX
Blue light, small source	Β(λ)	E _B	W•m⁻²	0.01	et whire	1,0	JEH JEH JUNIT	400	m ⁱ TE* v
Retinal thermal	R(λ)	L _R	W•m ⁻ ² •sr ⁻¹	28000/α	8.68e+01	28000/α	NI STEEL	71000/α	11.12 21V
Retinal thermal, weak visual	R(λ)	L _{IR}	W•m ⁻ 2•sr ⁻¹	545000 0.0017 ≤α≤ 0.011	Writek Auris	EX WALTEX	MAITER V	INCTER WALTER	L WALTER
stimulus	TEK WILL	The Muritification	White.	6000/α 0.011 ≤α≤ 0.1	of white	white was	i.14e-01	K MUTTER	
IR radiation , eye		E _{IR}	W•m⁻²	100	2.08e-03	570	MITER	3200	TEK nní X ci

Small source defined as one with α <0.011 radian. Averaging field of view at 10000 s is 0.1 radian. Involves evaluation of non-GLS source.

LB RFOV	Measured	Limit		
(mrad)	(W/m2/sr)	(W/m2/sr)		
100(Exempt Risk Group)	1.27e+00	1.00e+02		
11(Risk Group 1)	8.47e+00	1.00e+4		
1.7(Risk Group 2)	1.01e+01	4.00e+06		
LR RFOV (mrad)	Measured (W/m2/sr)	Limit (W/m2/sr)		
11(Exempt Risk Group)	8.68e+01	2.80e+05		
11(Risk Group 1)	8.68e+01	2.80e+05		
1.7(Risk Group 2)	1.03e+02	7.10e+5		

Reference No.: WTF23F10218911N

Page 14 of 16

Attachment 1: Equipment List

Equipment	Model/Type	Cal. Due. Date
Biosafety ultraviolet light leaking spectrum analysis system	EVERFINE PMS-700	2024-01-05
Precise digital display dc current stabilized voltage supply	EVERFINE WY305-V1	2024-01-05
High standards of stable ultraviolet radiation power	EVERFINE UVS-8005	2024-01-05
Ultraviolet radiation standard lamp	EVERFINE SIS-631	2024-01-05
D204BH ray radiation intensity standard lamp	EVERFINE D204BH-3200K	2024-01-05
AC power source	ACPOWER AFC-110104F	2024-01-05
Temperature & Humidity Datalogger	Testo 608-H1	2024-01-05

W

Attachment 2: Photo document

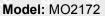


Photo 1

Photo 2

Photo 3

Photo 4

===== End of Report =====