

TEST REPORT

Reference No. : WTF18F07118134C

Applicant: 1 Mid Ocean Brands B.V.

Address: Unit 201 2/F., Laford Centre, 838 Lai Chi Kok Road, Cheung Sha Wan,

Kowloon, Hong Kong.

Manufacturer: 111034

Sample Name: Wine decanter with holder

Model No. : MO8444

Test Requested...... : According to client's requirement, with reference to German Food,

Articles of Daily Use and Feed Code of September 1, 2005(LFGB) Section 30 & 31, Council of Europe Resolution CM/Res(2013)9 and

Regulation (EC) No 1935/2004, test the specific items.

Test Conclusion.....: Pass (Please refer to next pages for details)

Date of Receipt sample : 2018-07-16

Date of Test : 2018-07-16 to 2018-08-02

Date of Issue : 2018-08-06

Test Result: Please refer to next page (s)

Remark: Selected test(s) as requested by applicant.

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Foshan) Co., Ltd.

Address: No. 13-19, 2/F, 2nd Building, Sunlink International Machinery City, Chencun Town, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381

Compiled by:

Approved by:

hang / Lab Manage

Abby.Zhou / Project Engineer

Reference No.: WTF18F07118134C Page 2 of 7

Test Results:

1. Overall Migration Test

Food Simulant	Toot Condition	Result (mg/dm²)		MDI (ma/dm²)	Limit ((-)2)	
Food Simulant	Test Condition	No.1	No.3	MDL (mg/dm ²)	Limit (mg/dm²)	
3% Acetic Acid	70°C for 2 hours	ND	ND.	3	10	
50% Ethanol	70°C for 2 hours	ND	ND TE	antie 3 mil n	10	

Note:

- 1. Test method: With reference to BS EN 1186-1: 2002, BS EN 1186-3: 2002, BS EN 1186-9: 2002 and BS EN1186-14: 2002.
- 2. "mg/dm2" = milligram per square decimetre
- 3. "°C" = Celsius degree
- 4. MDL= Method Detection Limit
- 5. ND = Not Detected, less than MDL
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416 and (EU) 2017/752.

2. Specific Migration of heavy metal (Nickel, Aluminium, Barium, Cobalt, Copper, Iron, Lithium, Manganese, Zinc)

THE STATE OUT OF	Result	Result (mg/kg)		Lind is too or think	
Test Items	No.1 No.3		MDL (mg/kg)	Limit (mg/kg)	
Specific migration of Nickel*	ND	ND	0.01	0.02	
Specific migration of Aluminium*	ND	ND	0.1	at 1et of	
Specific migration of Barium	ND ND	ND TO	0.1	w 1 w	
Specific migration of Cobalt	ND	ND	0.01	0.05	
Specific migration of Copper	ND d	ND	0.1	5 At	
Specific migration of Iron	ND	ND	0.1	48	
Specific migration of Lithium	ND	ND	0.01	0.6	
Specific migration of Manganese	ND.	ND ND	0.01	0.6	
Specific migration of Zinc	ND ND	ND	0.1	5	

Note:

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 70°C for 2 hours, analysis was performed by ICP-OES.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. MDL= Method Detection Limit
- 4. ND = Not Detected, less than MDL
- 5. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416 and (EU) 2017/752.
- 6. The testing item marked with '*' does not been accredited by CNAS.

Waltek Services (Foshan) Co., Ltd.

http://www.waltek.com.cn

Reference No.: WTF18F07118134C Page 3 of 7

3. Specific Migration of Primary Aromatic Amines

OLIEK MITEL WALTER WALTER	Result (mg/kg)		MDI (man/lum)	
Test Item	No.1	No.3	MDL (mg/kg)	Limit (mg/kg)
Migration of Primary aromatic amines	ND	ND	0.01	Not Detected (<0.01mg/kg)

Note:

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 70°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. MDL= Method Detection Limit
- 5. ND = Not Detected, less than MDL
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416 and (EU) 2017/752.

4. Specific Migration of Acrylonitrile

W W Total Born St	Result (mg/kg)		MDL (mg/kg)	
Test Item	No.1	No.3	MDL (mg/kg)	Limit (mg/kg)
Migration of Acrylonitrile	ND	ND	0.01	Not Detected (<0.01mg/kg)

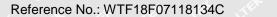
Note:

- 1. Test Method: With reference to EN 13130-1: 2004, sample preparation in 3% acetic acid at 70°C for 2 hours, analysis was performed by HS-GC-MS.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. MDL= Method Detection Limit
- 4. ND = Not Detected, less than MDL
- 5. The specification was quoted from (EU) No 10/2011.

Reference No.: WTF18F07118134C Page 4 of 7

5. Council of Europe Resolution CM/Res(2013)9-Specific Migration of Heavy Metal

Test Items	1st+2nd Migration (mg/kg)	MDL (ma/ka)	Limit (mg/kg)	
l est items	No.2	MDL (mg/kg)		
Aluminium (Al)	n ND	0.2	35	
Antimony (Sb)	ND ND	0.02	0.28	
Chromium (Cr)	ND	0.04	1.75	
Cobalt (Co)	IF IN ND IN IN	0.02	0.14	
Copper (Cu)	ND ND	0.2	28	
Iron (Fe)	1.8	0.4	280	
Manganese (Mn)	THE NOTE WILL	0.2	12.6	
Molybdenum (Mo)	ND ND	0.02	0.84	
Nickel (Ni)	0.04	0.02	0.98	
Silver (Ag)	ND	0.02	0.56	
Tin (Sn)	In ND III	0.2	700	
Vanadium (V)	ND	0.01	0.07	
Zinc (Zn)	ND	0.2	35	
Arsenic (As)	ND ND	0.002	0.014	
Barium (Ba)	ND	0.2	8.4	
Beryllium (Be)	II ND ND	0.01	0.07	
Cadmium (Cd)	ND NITTERNAL	0.002	0.035	
Lead (Pb)	ND	0.01	0.07	
Lithium (Li)	ND: WELL	0.01	0.336	
Mercury (Hg)	ND	0.002	0.021	
Thallium (TI)	ND ND	0.0002	0.0007	
Magnesium (Mg)	ND THE	0.2	no -m	
Titanium (Ti)	ND ND	0.02	t TEX TIER	


Reference No.: WTF18F07118134C Page 5 of 7

T	3rd Migration (mg/kg)	The court of	Limit (mg/kg)	
Test Items	No.2	MDL (mg/kg)		
Aluminium (Al)	ND TO NO	0.1	5_	
Antimony (Sb)	ND	0.01	0.04	
Chromium (Cr)	I ND W	0.02	0.25	
Cobalt (Co)	ND ND	0.01	0.02	
Copper (Cu)	W ND W	0.1	4	
Iron (Fe)	THE TOND THE THE	0.2	40	
Manganese (Mn)	ND	0.1	1.8	
Molybdenum (Mo)	ND W	0.01	0.12	
Nickel (Ni)	ND	0.01	0.14	
Silver (Ag)	ND ND	0.01	0.08	
Tin (Sn)	ND THE NO	0.1	100	
Vanadium (V)	ND	0.005	0.01	
Zinc (Zn)	ND	0.1	5	
Arsenic (As)	ND	0.001	0.002	
Barium (Ba)	ND ND	0.1	1.2	
Beryllium (Be)	ND ND	0.005	0.01	
Cadmium (Cd)	wh. ND	0.001	0.005	
Lead (Pb)	THE ME NO WILL WAS	0.005	0.01	
Lithium (Li)	ND -	0.005	0.048	
Mercury (Hg)	ND W	0.001	0.003	
Thallium (TI)	ND ND	0.0001	0.0001	
Magnesium (Mg)	ND ND	0.1	TEX SITEX- UNITED WAY	
Titanium (Ti)	ND ND	0.01	70 7	

Note:

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-OES and ICP-MS.
- 2. Test Condition and simulant: Sample(s) were migrated with 5g/L citric acid at 70°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. MDL = Method Detection Limit
- 5. ND = Not Detected, less than MDL
- 6. "--" = Not regulated
- 7. The specification was quoted from Technical Guide on Metals and alloys used in food contact materials of Council of Europe Resolution CM/Res(2013)9.

Sample Photo:

Photograph of parts tested:

No.	Photo of testing part	Parts Description	Client Claimed Material
in whi		LIEK OLIEK MITEK	LIFE WAITER WALTER WALT
MALTER			ex outex unitex whitek
1+	5.	Black plastic	ABS
		MALTER WAL W	in the man was
ier un	10 H R	LIEK OLIEK WIEK	UNITER WHITER WHITE WH
<u> </u>	Snowman 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 212	W W W	at let let like

Reference No.: WTF18F07118134C

Page 7 of 7

No.	Photo of testing part	Parts Description	Client Claimed Material
MITER 2 W	September 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Silvery metal	Stainless steel
LITER VINC VINLIER VINLIER	5-2-3 4 5 6 7 8 9 10 µ pp u15 16 17 18 19 20 n 22 22 5 2 2 2 3 2 3 0 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Transparent plastic	AS AS AND THE WALLEST WAND WAND WAND WAND WAND WAND WAND WAND

===== End of Report =====

