

Test Report	1	Report No.: GZ17103109R1EN	Date: 2017-11-27	Page 1 of 9
Applicant	:	Mid Ocean Brands B.V.		
Address	:	Unit 201, 2/F, Laford Centre, 838 Lai Ch	i Kok Road, Cheung Sha	Wan,
		Kowloon, Hong Kong		
Sample Name	:	Camping light		
Tested Model	:	MO9235		
Sample Receiving date	:	2017-10-31, , 2017-11-08, 2017-11-24		
Test period	:	2017-10-31 – 2017-11-07, 2017-11-08 –	2017-11-09,	
		2017-11-24 – 2017-11-24		
Test Requirement	:	The Restriction of the Use of Certain H	azardous Substances in	Electrical and
		Electronic Equipment, 2011/65/EU.		
Test Method	:	Please refer to next page(s).		
Test result	:	Please refer to next page(s).		
Conclusion	:	PASS		
		Based on the verification results of the s	ubmitted sample(s), the r	esults of
		Lead, Cadmium, Mercury, Hexavalent cl	nromium, Polybrominated	biphenyls
		(PBBs) and Polybrominated diphenyl eth	ners (PBDEs) comply with	າ the limits as
		set by RoHS Directive 2011/65/EU-The	e Restriction of the Use of	l Certain
		Hazardous Substances in Electrical and	Electronic Equipment.	
Note	:	The test results are related only to the te	ested items.	

ORIGINAL

Authorized signature

Toisch

Lab Manager: Gavin Zhou

2017-11-27

Report No.: GZ17103109R1EN Da

```
Date: 2017-11-27
```

```
Page 2 of 9
```

Test Method:

1. Disassembly, disjointment and mechanical sample preparation

-Ref. to IEC 62321-2: 2013, Disassembly, disjointment and mechanical sample preparation.

- 2. With reference to IEC 62321-1: 2013, tests were performed for the samples indicated by the photos in this report.
- (1) Screening Lead, mercury, cadmium, total chromium and total bromine

-Ref. to IEC 62321-3-1: 2013, Screening for Lead, mercury, cadmium, total chromium and total bromine by X-ray fluorescence spectrometry.

- (2) Wet chemical test method
 - a. Total Lead, Cadmium, Chromium and Mercury content
 - -Ref. to IEC 62321-4: 2013, determination of Mercury in polymers, metals and electronics by ICP-OES.
 - -Ref. to IEC 62321-5: 2013, determination of Cadmium, lead and chromium in polymers and electronics and cadmium and lead in metals by ICP-OES.
 - b. Chromium (VI) content
 - -For Colourless and coloured corrosion-protected coatings on metals, Ref. to IEC 62321-7-1: 2015, determination of presence of hexavalent chromium (Cr(VI)) in colourless and coloured corrosion-protected coatings on metals by the colorimetric method.
 - -For polymers and electronics, Ref. to IEC 62321-7-2: 2017, determination of hexavalent chromium (Cr(VI)) in polymers and electronics by the colorimetric method.
 - c. PBBs, PBDEs

-Ref. to IEC 62321-6: 2015, determination of polybrominated biphenyls and polybrominated diphenyl ethers in polymers by gas chromatograhy -mass spectrometry (GC-MS).

Report No.: GZ17103109R1EN

Date: 2017-11-27

Page 3 of 9

Test result(s):

Part No.	Part Description	Results of EDXRF				Chemical confirmation	Conclusion	
r art NO.		Pb	Cd	Hg	Cr	Br	results (mg/kg)	COnclusion
1#	Black plastic	BL	BL	BL	BL	BL		Pass
2#	Black plastic	BL	BL	BL	BL	BL		Pass
3	Silvery metal	BL	BL	BL	IN		Cr(VI): Negative	Pass
4#	Black plastic	BL	BL	BL	BL	BL		Pass
5	Black plastic (body)	BL	BL	BL	BL	BL		Pass
6	Transparent plastic	BL	BL	BL	BL	BL		Pass
7	Silvery plating	BL	BL	BL	BL			Pass
8#	White plastic (substrate)	BL	BL	BL	BL	BL		Pass
9#	White plastic (substrate)	BL	BL	BL	BL	BL		Pass
10	Black rubber ring	BL	BL	BL	BL	BL		Pass
11	Metal (screw)	BL	BL	BL	IN		Cr(VI): Negative	Pass
12	Metal (spring)	BL	BL	BL	IN		Cr(VI): Negative	Pass
13-1	Silvery plating	BL	BL	BL	BL			Pass
13-2	Black plastic (substrate)	BL	BL	BL	BL	BL		Pass
14-1	Red wire sheath		BL	BL	BL	BL		Pass
14-2	Copper wire	BL	BL	BL	BL			Pass
15	МСРСВ	BL	BL	BL	BL	BL		Pass
16	LED light	BL	BL	BL	BL	BL		Pass
17#	Soldering tin	IN	BL	BL	BL		Pb: 494	Pass
18-1	Blue wire sheath	BL	BL	BL	BL	BL		Pass
18-2	Copper wire	BL	BL	BL	BL			Pass
19-1	White wire sheath	BL	BL	BL	BL	BL		Pass
19-2	Copper wire	BL	BL	BL	BL			Pass
20-1	Silvery metal (jumper) (microswitch)	BL	BL	BL	BL			Pass
20-2	Red plastic button	BL	BL	BL	BL	BL		Pass
20-3	Black plastic (shell)	BL	BL	BL	BL	BL		Pass
20-4	White plastic (shell)	BL	BL	BL	BL	BL		Pass
20-5	Coppery metal (reed)	BL	BL	BL	BL		Pass	
20-6	Metal (terminal)	BL	BL	BL	BL			Pass
21#	Soldering tin	IN	BL	BL	BL		Pb: 494	Pass
22#	Black plastic (battery holder)	BL	BL	BL	BL	BL		Pass
23	Metal (screw)	BL	BL	BL	IN		Cr(VI): Negative	Pass

Report No.: GZ17103109R1EN

Date: 2017-11-27

Page 4 of 9

Part No.	Part Description	Results of EDXRF					Chemical confirmation	Conclusion
Fart NO.		Pb	Cd	Hg	Cr	Br	results (mg/kg)	Conclusion
24-1	Silvery metal (contact chip)	BL	BL	BL	IN		Cr(VI): Negative	Pass
24-2	Metal (spring)	BL	BL	BL	IN		Cr(VI): Negative	Pass
25#	Soldering tin	IN	BL	BL	BL		Pb: 494	Pass

Remark:

(^1) "---" = Not Applicable;

(²) (a) It is the result on total Br while test item on restricted substances is PBBs/PBDEs. It is the result on total Cr while test item on restricted substances is Cr(VI).

(b) The XRF screening test for RoHS elements-The reading may be different to the actual content in the sample be of non-uniformity composition.

(c) Results are obtained by EDXRF for primary screening, and further chemical testing by ICP-OES (for Pb, Cd, Hg), UV-VIS (for Cr(VI)) and GC/MSD (for PBBs, PBDEs) is recommended to be performed, if the concentration exceeds the below warming value according to IEC 62321-3-1: 2013.

Attached table 1, XRF screening limits in mg/kg for regulated elements in various matrices:

Element	Polymer Materials	Metallic Materials	Electronics
Cd	BL≤(70-3σ)< X	BL≤(70-3σ)< X	LOD< X
	< (130+3σ) ≤OL	< (130+3σ) ≤OL	< (250+3σ) ≤OL
Pb	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X
	< (1300+3σ) ≤OL	< (1300+3σ) ≤OL	< (1500+3σ) ≤OL
Hg	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X
	< (1300+3σ) ≤OL	< (1300+3σ) ≤OL	< (1500+3σ) ≤OL
Br	BL≤(300-3σ)< X	N.A.	BL≤(250-3σ)< X
Cr	BL≤(700-3σ)< Χ	BL≤(700-3σ)< Χ	BL≤(500-3σ)< X

Note: ① BL "below limit" = the result less than the limit.

- ② OL "over limit" = the result greater than the limit.
- ③ IN = inconclusive, the region where need further chemical testing by ICP-OES (for Pb, Cd, Hg), UV-VIS (for Cr(VI)) and GC/MSD (for PBBs, PBDEs).
- (4) 3σ = Repeability of the analyser at the action level.
- \bigcirc LOD = Limit of detection.

Report No.: GZ17103109R1EN

Date: 2017-11-27

Page 5 of 9

(^3) (a) mg/kg = ppm = 0.0001%;

(b) N.D. = Not detected (lower than RL);

(c) Reporting Limit (RL) and Limit of Directive 2011/65/EU.

Parameter	Unit	Limit	Reporting Limit (RL)
Lead (Pb)	mg/kg	1000	10
Cadmium (Cd)	mg/kg	100	10
Mercury (Hg)	mg/kg	1000	10
Chromium VI (Cr VI)	mg/kg	1000	R1
Group PBBs	mg/kg	1000	R2
Group PBDEs	mg/kg	1000	R2

R1: Cr(VI) for metal sample, the reporting limit (RL) = Method Detection Limit (MDL) = 0.10 ug/cm^2 .

The reporting limit (RL) of Cr(VI) for polymers and electronics is 10mg/kg.

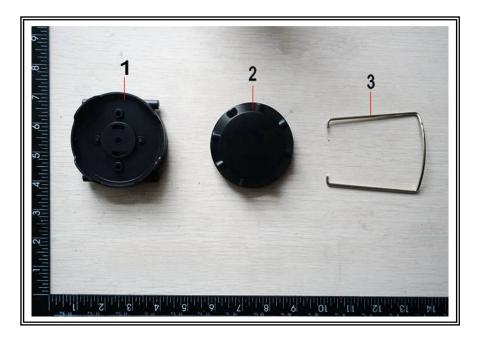
R2: The reporting limit (RL) for single compound of PBBs & PBDEs is 50mg/kg.

(d) According to IEC 62321-7-1: 2015, result on Cr(VI) for metal sample is shown as Negative, Inconclusive or Positive: Negative = Absence of Cr(VI), Inconclusive = Maybe exist Cr(VI), Positive = Presence of Cr(VI)

Positive – Presence of CI(VI).			
Colorimetric result	Qualitative result		
(Cr(VI) concentration)			
The sample solution is < the 0.10	The sample is negative for Cr(VI)-The Cr(VI) concentration is		
ug/cm ² equivalent comparison	below the limit of quantification. The coating is considered a		
standard solution	non-Cr(VI) based coating.		
The sample solution is \geq the 0.10	The result is considered to be inconclusive – Unavoidable		
ug/cm^2 and \leq the 0.13 ug/cm^2	coating variations may influence the determination.		
equivalent comparison standard	Recommendation: if addition samples are available, perform a		
solutions	total of 3 trials to increase sampling surface area. Use the		
	averaged result of the 3 trials for the final determination.		
The sample solution is > the 0.13	The sample is positive for Cr(VI)-The Cr(VI) concentration is		
ug/cm ² equivalent comparison	above the limit of quantification and the statistical margin of		
standard solution	error. The sample coating is considered to contain Cr(VI).		

Remark: This report instead of GZ17103109EN.

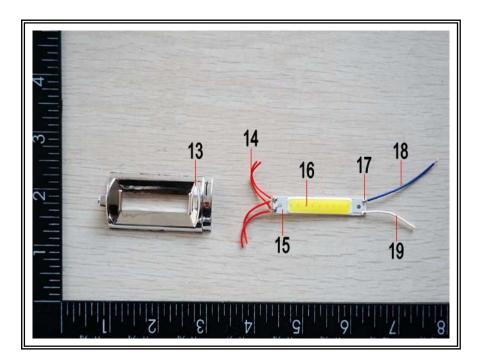
Report No.: GZ17103109R1EN


Date: 2017-11-27

Page 6 of 9

Sample photo(s):

Test item: Camping light Tested Model: MO9235

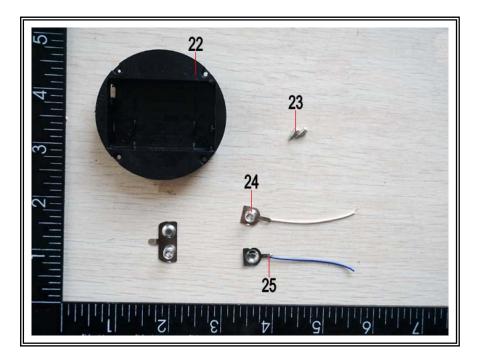


Report No.: GZ17103109R1EN

Date: 2017-11-27

Page 7 of 9





Report No.: GZ17103109R1EN

Date: 2017-11-27

Page 8 of 9

Test Report Report No.:

Report No.: GZ17103109R1EN Date: 2017-11-27

11-27 Pa

Page 9 of 9

GIG authenticate the photo(s) on original report only

****End of Report****