

Test Report		Report No.: GZ17110604EN	Date: 2017-11-09	Page 1 of 8		
Applicant	:	Mid Ocean Brands B.V.				
Address	:	Unit 201, 2/F, Laford Centre, 838 Lai Ch	ii Kok road, Cheung Sha \	Nan,		
		Kowloon, Hong Kong				
Sample Name	:	Clip light				
Tested Model	:	MO9254				
Model/Type reference	:	N/A				
Sample Receiving date	:	2017-11-06, 2017-11-08				
Test period	:	2017-11-06 – 2017-11-08, 2017-11-08 – 2017-11-09				
Test Requirement	:	The Restriction of the Use of Certain Hazardous Substances in Electrical and				
		Electronic Equipment, 2011/65/EU.				
Test Method	:	Please refer to next page(s).				
Test result	:	Please refer to next page(s).				
Conclusion	:	PASS				
		Based on the verification results of the	submitted sample(s), the r	esults of		
		Lead, Cadmium, Mercury, Hexavalent of	hromium, Polybrominated	biphenyls		
		(PBBs) and Polybrominated diphenyl et	hers (PBDEs) comply with	າ the limits as		
		set by RoHS Directive 2011/65/EU—Th	e Restriction of the Use of	f Certain		
		Hazardous Substances in Electrical and	I Electronic Equipment.			
Note	:	The test results are related only to the t	ested items.			

ORIGINAL

Authorized signature

Toisch

Lab Manager: Gavin Zhou

2017-11-09

Report No.: GZ17110604EN

Test Method:

1. Disassembly, disjointment and mechanical sample preparation

-Ref. to IEC 62321-2: 2013, Disassembly, disjointment and mechanical sample preparation.

- 2. With reference to IEC 62321-1: 2013, tests were performed for the samples indicated by the photos in this report.
- (1) Screening Lead, mercury, cadmium, total chromium and total bromine

-Ref. to IEC 62321-3-1: 2013, Screening for Lead, mercury, cadmium, total chromium and total bromine by X-ray fluorescence spectrometry.

- (2) Wet chemical test method
 - a. Total Lead, Cadmium, Chromium and Mercury content
 - -Ref. to IEC 62321-4: 2013, determination of Mercury in polymers, metals and electronics by ICP-OES.
 - -Ref. to IEC 62321-5: 2013, determination of Cadmium, lead and chromium in polymers and electronics and cadmium and lead in metals by ICP-OES.
 - b. Chromium (VI) content
 - -For Colourless and coloured corrosion-protected coatings on metals, Ref. to IEC 62321-7-1: 2015, determination of presence of hexavalent chromium (Cr(VI)) in colourless and coloured corrosion-protected coatings on metals by the colorimetric method.
 - -For polymers and electronics, Ref. to IEC 62321-7-2: 2017, determination of hexavalent chromium (Cr(VI)) in polymers and electronics by the colorimetric method.
 - c. PBBs, PBDEs

-Ref. to IEC 62321-6: 2015, determination of polybrominated biphenyls and polybrominated diphenyl ethers in polymers by gas chromatograhy -mass spectrometry (GC-MS).

Report No.: GZ17110604EN

Date: 2017-11-09

Page 3 of 8

Test result(s):

Part No.	Part Description	Results of EDXRF					Chemical confirmation	Conclusion
Fall NO.			Cd	Hg	Cr	Br	results (mg/kg)	Conclusion
1	Red plastic	BL	BL	BL	BL	BL		Pass
2-1	Silvery plating	BL	BL	BL	BL			Pass
2-2	Black plastic (substrate)	BL	BL	BL	BL	BL		Pass
3	Transparent plastic	BL	BL	BL	BL	BL		Pass
4-1	Red wire sheath	BL	BL	BL	BL	BL		Pass
4-2	Copper wire	BL	BL	BL	BL	BL		Pass
5#	Soldering tin	IN	BL	BL	BL		Pb: 494	Pass
6	LED light	BL	BL	BL	BL	BL		Pass
7-1	White wire sheath	BL	BL	BL	BL	BL		Pass
7-2	Copper wire	BL	BL	BL	BL			Pass
8	МСРСВ	BL	BL	BL	BL	BL		Pass
9	Metal (screw)	BL	BL	BL	IN		Cr(VI): Negative	Pass
10-1	Metal (conducting plate)	BL	BL	BL	IN		Cr(VI): Negative	Pass
10-2	Metal (spring)	BL	BL	BL	IN		Cr(VI): Negative	Pass
11#	Soldering tin	IN	BL	BL	BL		Pb: 494	Pass
12-1	Black plastic button (switch)	BL	BL	BL	BL	BL		Pass
12-2	Silvery metal shell	BL	BL	BL	BL			Pass
12-3	Silvery metal (contact chip)	BL	BL	BL	BL			Pass
12-4	Brown plastic base	BL	BL	BL	BL	BL		Pass
12-5	Metal (pins)	BL	BL	BL	BL			Pass
13#	Soldering tin	IN	BL	BL	BL		Pb: 494	Pass
14	Green plastic	BL	BL	BL	BL	BL		Pass
15	Orange plastic	BL	BL	BL	BL	BL		Pass
16	Blue plastic	BL	BL	BL	BL	BL		Pass

Report No.: GZ17110604EN

Remark:

- (^1) "---" = Not Applicable;
- ([^]2) (a) It is the result on total Br while test item on restricted substances is PBBs/PBDEs. It is the result on total Cr while test item on restricted substances is Cr(VI).

(b) The XRF screening test for RoHS elements-The reading may be different to the actual content in the sample be of non-uniformity composition.

(c) Results are obtained by EDXRF for primary screening, and further chemical testing by ICP-OES (for Pb, Cd, Hg), UV-VIS (for Cr(VI)) and GC/MSD (for PBBs, PBDEs) is recommended to be performed, if the concentration exceeds the below warming value according to IEC 62321-3-1: 2013.

Attached table 1, XRF screening limits in mg/kg for regulated elements in various matrices:

Element	Polymer Materials	Metallic Materials	Electronics
Cd	BL≤(70-3σ)< X	BL≤(70-3σ)< X	LOD< X
	< (130+3σ) ≤OL	< (130+3σ) ≤OL	< (250+3σ) ≤OL
Pb	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X
	< (1300+3σ) ≤OL	< (1300+3σ) ≤OL	< (1500+3σ) ≤OL
Hg	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X
	< (1300+3σ) ≤OL	< (1300+3σ) ≤OL	< (1500+3σ) ≤OL
Br	BL≤(300-3σ)< X	N.A.	BL≤(250-3σ)< X
Cr	BL≤(700-3σ)< X	BL≤(700-3σ)< Χ	BL≤(500-3σ)< X

Note: ① BL "below limit" = the result less than the limit.

- O OL "over limit" = the result greater than the limit.
- ③ IN = inconclusive, the region where need further chemical testing by ICP-OES (for Pb, Cd, Hg), UV-VIS (for Cr(VI)) and GC/MSD (for PBBs, PBDEs).
- (4) 3σ = Repeability of the analyser at the action level.
- 5 LOD = Limit of detection.

(^3) (a) mg/kg = ppm = 0.0001%;

(b) N.D. = Not detected (lower than RL);

(c) Reporting Limit (RL) and Limit of Directive 2011/65/EU.

Parameter	Unit	Limit	Reporting Limit (RL)
Lead (Pb)	mg/kg	1000	10
Cadmium (Cd)	mg/kg	100	10
Mercury (Hg)	mg/kg	1000	10
Chromium VI (Cr VI)	mg/kg	1000	R1
Group PBBs	mg/kg	1000	R2
Group PBDEs	mg/kg	1000	R2

R1: Cr(VI) for metal sample, the reporting limit (RL) = Method Detection Limit (MDL) = 0.10 ug/cm².

The reporting limit (RL) of Cr(VI) for polymers and electronics is 10mg/kg.

R2: The reporting limit (RL) for single compound of PBBs & PBDEs is 50mg/kg.

Report No.: GZ17110604EN

Date: 2017-11-09

Page 5 of 8

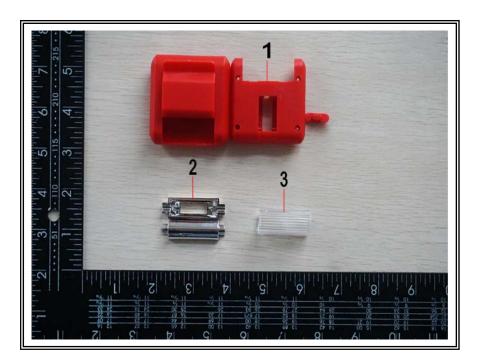
(d) According to IEC 62321-7-1: 2015, result on Cr(VI) for metal sample is shown as Negative, Inconclusive or Positive: Negative = Absence of Cr(VI), Inconclusive = Maybe exist Cr(VI),

Colorimetric result	Qualitative result		
(Cr(VI) concentration)			
The sample solution is < the 0.10	The sample is negative for Cr(VI)_The Cr(VI) concentration is		
ug/cm ² equivalent comparison	below the limit of quantification. The coating is considered a		
standard solution	non-Cr(VI) based coating.		
The sample solution is \geq the 0.10	The result is considered to be inconclusive – Unavoidable		
ug/cm^2 and \leq the 0.13 ug/cm^2	coating variations may influence the determination.		
equivalent comparison standard	Recommendation: if addition samples are available, perform a		
solutions	total of 3 trials to increase sampling surface area. Use the		
	averaged result of the 3 trials for the final determination.		
The sample solution is > the 0.13	The sample is positive for Cr(VI)_The Cr(VI) concentration is		
ug/cm ² equivalent comparison	above the limit of quantification and the statistical margin of		
standard solution	error. The sample coating is considered to contain Cr(VI).		

Positive = Presence of Cr(VI).

ORIGINAL

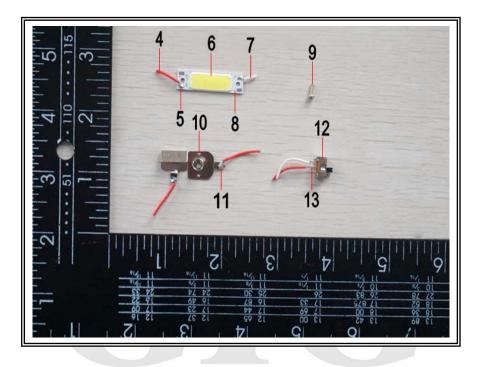
Report No.: GZ17110604EN


Date: 2017-11-09

Page 6 of 8

Sample photo(s):

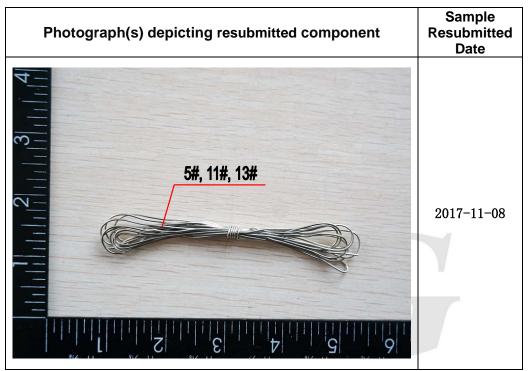
Test item: Clip light Tested Model: MO9254



Report No.: GZ17110604EN

Date: 2017-11-09

Page 7 of 8



Report No.: GZ17110604EN

Date: 2017-11-09

Page 8 of 8

GIG authenticate the photo(s) on original report only

****End of Report****

