

TEST REPORT

Reference No	WTF18F06116624W
Applicant	Mid Ocean Brands B.V.
Address	Unit 201 2/F., Laford Centre, 838 Lai Chi Kok Road, Cheung Sha Wan, Kowloon, Hong Kong. 103221
Product Name	Bluetooth Speaker
Model No	MO9261
Standards : Date of Receipt sample :	Article 3.1a Health (EN 62479:2010) Article 3.1a Electrical Safety (EN 60950-1:2006+A11:2009+A1:2010 +A12:2011+A2:2013)* Article 3.1b EMC (EN 55032:2015, EN 55024:2010+A1:2015)** Article 3.1b EMC (ETSI EN 301 489-1 V2.1.1:2017, ETSI EN 301 489- 17 V3.1.1: 2017) Article 3.2 Radio spectrum (ETSI EN 300 328 V2.1.1:2016) 2018-07-18
Date of Test	2018-07-18 to 2018-07-21
Date of Issue	2018-07-21
Test Result	Pass

Remarks:

*Refer to test report WTF18F06116621S for details.

**Refer to test report WTF18F06116623E for details.

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Foshan) Co., Ltd.

Address: S03-S05, 1/F, 19th Building, Sunlink International Machinery City, Chencun Town, Shunde District, Foshan, Guangdong, China.

Tel:+86-757-23811398 Fax:+86-757-23811381

Compiled by:

Roy Hong / Project Engineer

Approved by: ERVICES WA1 iao STREPOTOm Xiao / Manager

1 Test Summary

	Radio Spectrum		
Test	Test Requirement	Limit / Severity	Result
RF output power	ETSI EN 300 328 V2.1.1:2016	≤20dBm	Pass
Duty Cycle, Tx-sequence, Tx-gap	ETSI EN 300 328 V2.1.1:2016	-	N/A
Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	ETSI EN 300 328 V2.1.1:2016	Clause 4.3.1.4.3	Pass
Hopping Frequency Separation	ETSI EN 300 328 V2.1.1:2016	≥100kHz	Pass
Medium Utilization	ETSI EN 300 328 V2.1.1:2016	-	N/A
Adaptivity (Adaptive Frequency Hopping)	ETSI EN 300 328 V2.1.1:2016	-	N/A
Occupied Channel Bandwidth	ETSI EN 300 328 V2.1.1:2016	Within the band 2400- 2483.5MHz	Pass
Transmitter unwanted in the OOB domain	ETSI EN 300 328 V2.1.1:2016	Figure 1	Pass
Transmitter unwanted emissions in the spurious domain	ETSI EN 300 328 V2.1.1:2016	Table 4	Pass
Receiver spurious emissions	ETSI EN 300 328 V2.1.1:2016	Table 5	Pass
Receiver Blocking	ETSI EN 300 328 V2.1.1:2016	Clause 4.3.1.12.4	Pass
	EMC		
Test	Test Requirement	Class / Severity	Result
Radiation Emission	ETSI EN 301 489-17 V3.1.1:2017	Class B	Pass
Conducted Emissions	ETSI EN 301 489-17 V3.1.1:2017	Class B	N/A
Harmonic Current Emissions	ETSI EN 301 489-17 V3.1.1:2017	Clause 7 of EN 61000-3-2	N/A
Voltage Fluctuations and Flicker	ETSI EN 301 489-17 V3.1.1:2017	Clause 5 of EN 61000-3-3	N/A
Radio frequency electromagnetic field (80 MHz to 6 000MHz)	ETSI EN 301 489-17 V3.1.1:2017	3V/m, 80%, 1kHz, Amp. Mod.	Pass
Electrostatic Discharge (ESD)	ETSI EN 301 489-17 V3.1.1:2017	±4 kV Contact ±2/±4/±8 kV Air	Pass
Fast Transients Common Mode (EFT)	ETSI EN 301 489-17 V3.1.1:2017	AC±0.5/1.0kV	N/A
Voltage Dips and Interruptions	ETSI EN 301 489-17 V3.1.1:2017	0 % UT* for 0.5per 0 % UT* for 1per 70 % UT* for 25per 0 % UT* for 250per	N/A
RF common mode 0,15 MHz to 80 MHz (CS)	ETSI EN 301 489-17 V3.1.1:2017	3Vrms(emf), 80%, 1kHz Amp. Mod.	N/A
Surge	ETSI EN 301 489-17 V3.1.1:2017	±1kV D.M.† ±2kV C.M.‡	N/A

HEALTH				
Test	Test Method	Class / Severity	Result	
RF Exposure	EN 62479:2010	-	Pass	

Remark:

Pass Test item meets the requirement

N/A Not Applicable

RF In this whole report RF means Radio Frequency

2 Contents

		Pa	age
1	TES	T SUMMARY	2
2	CON	ITENTS	4
3	GEN	IERAL INFORMATION	5
	3.1	GENERAL DESCRIPTION OF E.U.T.	
	3.2	DETAILS OF E.U.T.	
	3.3	CHANNEL LIST	
	3.4	Additional information	6
	3.5	SUBCONTRACTED	8
	3.6	ABNORMALITIES FROM STANDARD CONDITIONS	8
4	EQU	IPMENT USED DURING TEST ······	9
	4.1	Equipment List	9
	4.2	SUPPORT EQUIPMENT	11
	4.3	MEASUREMENT UNCERTAINTY ·····	11
5	RF R	REQUIREMENTS	12
	5.1	RF OUTPUT POWER ······	12
	5.2	ACCUMULATED TRANSMIT TIME, MINIMUM FREQUENCY OCCUPATION AND HOPPING SEQUENCE	14
	5.3	HOPPING FREQUENCY SEPARATION	18
	5.4	OCCUPIED CHANNEL BANDWIDTH	
	5.5	TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	
	5.6	TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	
	5.7	RECEIVER SPURIOUS EMISSIONS	
	5.8	RECEIVER BLOCKING	
6	EMC	REQUIREMENTS FOR EMISSIONS	
	6.1	RADIATED EMISSION ·····	26
7	EMC	REQUIREMENT FOR IMMUNITY	36
	7.1	Performance Criteria ·····	36
	7.2	ELECTROSTATIC DISCHARGE(ESD) ······	37
	7.3	RF ELECTROMAGNETIC FIELD (80MHz TO 6 000MHz) (RS)	39
8	HEA	LTH REQUIREMENTS	41
	8.1	LIMITS ·····	41
	8.2	TEST RESULT OF RF EXPOSURE EVALUATION.	
9	РНО	TOGRAPHS —TEST SETUP	42
	9.1	PHOTOGRAPH – SPURIOUS EMISSIONS TEST SETUP·····	42
	9.2	PHOTOGRAPH - RADIATED EMISSIONS TEST SETUP	
	9.3	PHOTOGRAPH - ESD TEST SETUP	
	9.4	PHOTOGRAPH - RADIO-FREQUENCY COMMON MODE TEST SETUP ······	
10		TOGRAPHS - CONSTRUCTIONAL DETAILS	
		EUT – External Photos ······	
		EUT – INTERNAL PHOTOS ······	

3 General Information

3.1 General Description of E.U.T.

Product Name	Bluetooth Speaker
Model No	MO9261
Remark	
3.2 Details of E.U.T.	
Frequency Range	2402-2480MHz, 79 Channels in total
Nominal Channel Bandwidth	1
Maximum RF Output Power :	-4.29 dBm
Bluetooth Version	Bluetooth V4.2+ BR+ EDR
Type of Modulation	GFSK, π/4DQPSK
Antenna installation	PCB Printed Antenna
Antenna Gain	0dBi
The lowest oscillator	24MHz
Receiver Category	3
Supply Voltage	Input: DC 5V; Recharged Voltage: 3.7 V

3.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	-	-

3.4 Additional information

a) The type of modulation used by the equipment:

- 🛛 FHSS
- Other forms of modulation

b) In case of FHSS modulation:

- In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies: **N/A**
- In case of Adaptive Frequency Hopping Equipment:
 - The maximum number of Hopping Frequencies: 79
 - The minimum number of Hopping Frequencies: 79

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- \boxtimes adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

- The equipment has implemented an LBT based DAA mechanism
- igtimes The equipment has implemented a non-LBT based DAA mechanism
- The equipment can operate in more than one adaptive mode

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.): <u>N/A</u>dBm

The maximum (corresponding) Duty Cycle: N/A %

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared): $\underline{N/A}$

f) The different transmit operating modes (tick all that apply):

Operating mode 1: Single Antenna Equipment

- Equipment with only one antenna
- Equipment with two diversity antennas but only one antenna active at any moment in time
- ☐ Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one antenna is used (e.g. IEEE 802.11[™] [i.3] legacy mode in smart antenna systems)

Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming

- Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2

Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming

- ☐ Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
- High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2

g) Type of Equipment (stand-alone, combined, plug-in radio device, etc.):

Stand-alone

Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment)

Plug-in radio device (Equipment intended for a variety of host systems)

Other

h) The normal and the extreme operating conditions that apply to the equipment:

Normal operating conditions (if applicable):

Operating temperature: 25° C

Extreme operating conditions:

Operating temperature range: Minimum: -10 ° C Maximum +50 ° C

i) The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p. levels:

- Antenna Type:
 - Integral Antenna (information to be provided in case of conducted measurements) Antenna Gain:0dBi

Dedicated Antennas (equipment with antenna connector)

Single power level with corresponding antenna(s)

☐ Multiple power settings and corresponding antenna(s)

j) Describe the test modes available which can facilitate testing:

The EUT can be into the Engineer mode for testing.

k) The equipment type (e.g. Bluetooth®, IEEE 802.11[™] [i.3], IEEE 802.15.4[™] [i.4], proprietary, etc.): <u>Bluetooth</u>

I) Geo-location capability supported by the equipment:

🗌 Yes

The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user

🛛 No

3.5 Subcontracted

Whether parts of tests for the product have been subcontracted to other labs:

🛛 Yes 🗌 No

If Yes, list the related test items and lab information:

Test items: Receiver Blocking

Lab information: Waltek Services (Shenzhen) Co., Ltd.

3.6 Abnormalities from Standard Conditions

None.

4 Equipment Used during Test

4.1 Equipment List

3m So	emi-anechoic Chambe	r for Radiation Emi	ission and Spu	rious Emission	I	
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMI TEST RECEIVER	RS	ESR7	101566	2018-01-18	2019-01-17
2	Spectrum Analyzer	Agilent	N9020A	MY48011796	2018-01-18	2019-01-17
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9162	9162-117	2018-01-18	2019-01-17
4	Coaxial Cable (below 1GHz)	H+S	CBL3-NN- 12+3 m	214NN320	2018-01-18	2019-01-17
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	01561	2018-01-18	2019-01-17
6	Broadband Preamplifier (below 1GHz)	SCHWARZBECK	BBV 9743	BBV 9743#170	2018-01-18	2019-01-17
7	Broadband Preamplifier (Above 1GHz)	Lunar E M	LNA1G18-40	20160501002	2018-01-18	2019-01-17
8	Coaxial Cable (above 1GHz)	Times-Micorwave	CBL5-NN	-	2018-01-18	2019-01-17
RF Co	onducted test					
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Environmental Chamber	KSON	THS-D4C-100	5244K	2018-01-18	2019-01-17
2	Spectrum Analyzer	Agilent	N9020A	MY48011796	2018-01-18	2019-01-17
3	ESG VECTOR SIGNAL GENERATOR	Agilent	N5182A	MY50141533	2018-01-18	2019-01-17
4	EXG Analog Signal Generator	Agilent	N5181A	MY48080720	2018-01-18	2019-01-17
5	RF Control Unit	CHANGCHUANG	JS0806-2	-	2018-01-18	2019-01-17
6	USB Wideband Power Sensor	KEYSIGHT	U2021A	MY56510008	2018-01-18	2019-01-17
ESD						
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	ESD Simulator	TESEQ	NSG437	521	2018-01-18	2019-01-17

Radio	Radio-frequency electromagnetic fields					
ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	RF Power Amplifier	OPHIR	5225F	1051/1712	2018-01-18	2019-01-17
2	RF Power Amplifier	OPHIR	5293F	1051/171.	2018-01-18	2019-01-17
3	Stacked double logarithmic periodic antenna	SCHWARZBECK	STLP9128E- SPECIAL	STLP 9128E	2018-01-18	2019-01-17
4	Stacked double logarithmic periodic antenna	SCHWARZBECK	STLP 9149	STLP 9149 #476	2018-01-18	2019-01-17
5	RF signal generator	Agilent	N5181A	MY48080720	2018-01-18	2019-01-17

4.2 Support equipment

ĺ	ltem	Equipment	Technical Data	Manufacturer	Model No.	Serial No.
	1	Notebook	AC 230V/50Hz	Lenovo	ThinkPad Edge E430	00426-OEM-8992662- 00400
	2	Mobile Phone		Xiaomi	Xiaomi 5s	Fa8764d0

4.3 Measurement Uncertainty

Parameter	Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5dB
Power Spectral Density, conducted	±3dB
Unwanted Emissions, conducted	±3dB
All emissions, radiated	±6dB
Time	±5%
Duty Cycle	±5%
Temperature	±1 °C
Humidity	±5%
DC and low frequency voltages	±3%
Conduction disturbance (150kHz~30MHz)	±2.66dB
Radiated Emission(30MHz~1000MHz)	±4.56dB
Radiated Emission(1000MHz~18000MHz)	±4.66dB

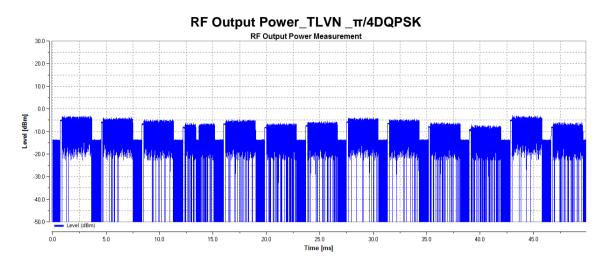
5 **RF Requirements**

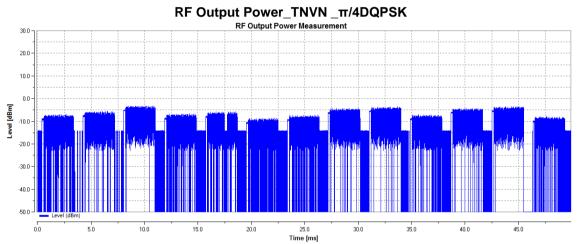
5.1 RF Output power

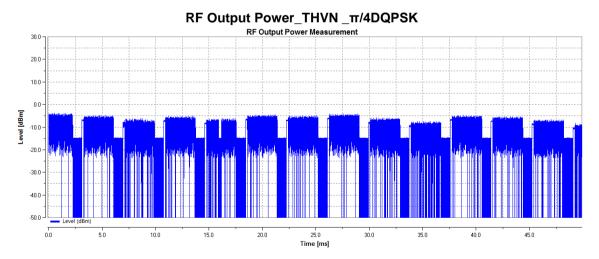
Test Requirement	:	ETSI EN 300 328 V2.1.1, Clause 4.3.1.2
Test Procedure	:	ETSI EN 300 328 V2.1.1, Clause 5.4.2.2.1.2
Limit	:	ETSI EN 300 328 V2.1.1, Clause 4.3.1.2.3
Test Result	:	Pass

5.1.1 E.U.T. Operation

Environmental Conditions:	
Temperature	25°C
Humidity	49%RH
Test Mode:	
Input Voltage	DC 3.3V
Operating mode	Transmit mode
Remark	Pre-Scan has been conducted to determine the worst-case mode from all available modulations. Modulation type π /4DQPSK was selected for the final test.


5.1.2 Test Result


Modulation Type	Test conditions			Limit	Verdict
	Voltage (Vdc)	Temperature (°C)	EIRP (dBm)	(dBm)	verdict
	π/4DQPSK V _{nor} =3.3	T _{min} =-10	-4.29		
II/4DQF SK		T _{nor} =+25	-5.18	20.00	Pass
		T _{max} =+55	-5.28		


Remark: EIRP=Conducted output power + ANT gain

Test Graphs:

5.2 Accumulated Transmit Time, Minimum Frequency Occupation and Hopping Sequence

Test Requirement	ETSI EN 300 328 V2.1.1, Clause 4.3.1.4
Test Procedure	ETSI EN 300 328 V2.1.1, Clause 5.4.4.2
Limit	ETSI EN 300 328 V2.1.1, Clause 4.3.1.4.3
Test Result	Pass

final test.

5.2.1 E.U.T. Operation

Environmental Conditions:

Temperature	25°C
Humidity	49%RH
Test Mode:	
Input Voltage	DC 3.3V
Operating mode	Transmit mode
Remark	Pre-Scan has been conducted to determine the worst-case mode from all available modulations. Modulation type GFSK was selected for the

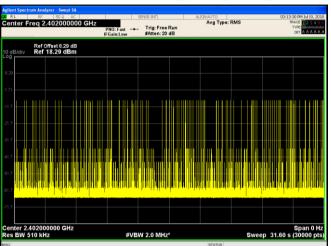
5.2.2 Test Result

◆ Accumulated Dwell Time

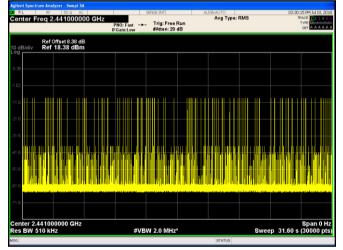
Modulation Type	Test Condition	Test Channel	Accumulated Transmit Time (ms)	Limit (ms)	Verdict
GFSK	TNVN	2402MHz	367.613	400	Pass
GFSK	TNVN	2441MHz	387.627	400	Pass
GFSK	TNVN	2480MHz	348.653	400	Pass

Minimum Frequency Occupation

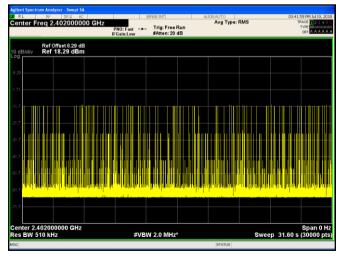
Modulation Type	Test Condition	Test Channel	Frequency occupation times (N)	Limit (N)	Verdict
GFSK	TNVN	2402MHz	3		Pass
GFSK	TNVN	2441MHz	5	≥1	Pass
GFSK	TNVN	2480MHz	5		Pass


Hopping Sequence

Modulation Type	Test Condition	Number of Hopping Channel	Limit	-20 dB Bandwidth(%)	Limit	Verdict
GFSK	TNVN	79	≥15	95.21	70 % of the band 2400MHz-2483.5MHz	Pass


Test Graphs:

Accumulated Dwell Time



Accumulated Dwell time_TNVN_GFSK_2402

Accumulated Dwell time_TNVN_GFSK_2441

Accumulated Dwell time_TNVN_GFSK_2480

Minimum Frequency Occupation

Minimum Frequency Occupation_TNVN_GFSK_2402

Algend
Augend
Oct 4:37 PM J39, 2016

Center Freq 2.402000000 GHz
PP00 Fail
Augend
Oct 4:37 PM J39, 2016

P10 Float
PP00 Fail
Augend
Oct 4:37 PM J39, 2016

P10 Float
PP00 Fail
Augend
Oct 4:37 PM J39, 2016

P10 Float
PP00 Fail
Augend
Oct 4:37 PM J39, 2016

P10 Float
PP00 Fail
PP00 Fail
Oct 4:37 PM J39, 2016

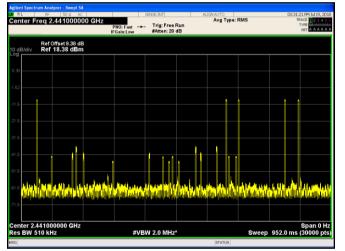
P10 Float
PP00 Fail
PP00 Fail
Oct 4:37 PM J39, 2016

P10 Float
PP00 Fail
PP00 Fail
Oct 4:37 PM J39, 2016

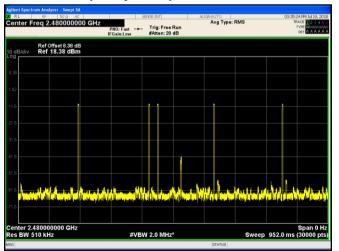
P10 Float
PP00 Fail
PP00 Fail
Oct 4:37 PM J39, 2016

P10 Float
PP00 Fail
PP00 Fail
Oct 4:37 PM J39, 2016

P10 Float
PP00 Fail
PP00 Fail
Oct 4:37 PM J39, 2016


P10 Float
PP00 Fail
PP00 Fail
PP00 Fail
PP00 Fail

P10 Fail
PP00 Fail
PP00 Fail
PP00 Fail
PP00 Fail


P10 Fail
PP00 Fail
PP00 Fail
PP00 Fail
PP00 Fail

P10 Fail
PP00 Fail
PP00 Fai

Minimum Frequency Occupation_TNVN_GFSK_2441

Minimum Frequency Occupation_TNVN_GFSK_2480

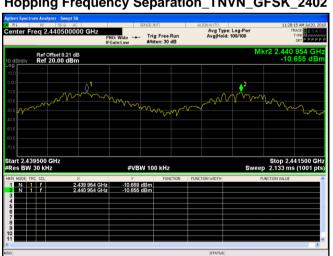
♦ Hopping Sequence

Hopping Sequence_TNVN_GFSK

	41750000 GHz	PNO: Fast 🔸 IFGain:Low	SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: Avg Hold:	RMS 100/100	03:25:46 PM Jul 19, 20 TRACE 2 3 4 5 TYPE MUMUMU DET A A A A A
Ref Of 0 dB/div Ref 2	fset 8.29 dB 0.00 dBm				Mkr3	2.403 955 2 GH -7.397 dBr
	wwww	~~~	Marina and a second	****		///////////////////////////////////////
600 70.0 Start 2.40000 GF Res BW 510 kF #R MODE TRC SCL 1 N 1 f		y GHz -27,721	SW 2.0 MHz*	FUNCTION WIDTH		Stop 2.48350 GH 0 1.002 s (30000 pts NCTION VALUE
2 N 1 f 4 5 6 7 7 8 9 9 0 1	2.403 955 2 (dBm			

5.3 Hopping Frequency Separation

Test Requirement	ETSI EN 300 328 V2.1.1, Clause 4.3.1.5
Test Procedure	ETSI EN 300 328 V2.1.1, Clause 5.4.5.2
Test Method	Option 1 of Clause 5.4.5.2
Limit	ETSI EN 300 328 V2.1.1, Clause 4.3.1.5.3
Test Result	Pass


5.3.1 E.U.T. Operation

Environmental Conditions:	
Temperature	25°C
Humidity	49%RH
Test Mode:	
Input Voltage	DC 3.3V
Operating mode	Transmit mode
Remark	Pre-Scan has been conducted to determine the worst-case mode from all available modulations. Modulation type GFSK was selected for the final test.

5.3.2 Test Result

Modulation Type	Test Condition	Test Channel	Channel Separation (MHz)	Limit(kHz)	Verdict
GFSK	TNVN	2402MHz	1.000	≥100	Pass

Test Graphs:

Hopping Frequency Separation_TNVN_GFSK_2402

5.4 Occupied Channel Bandwidth

Test Requirement	:	ETSI EN 300 328 V2.1.1, Clause 4.3.1.8
Test Procedure	:	ETSI EN 300 328 V2.1.1, Clause 5.4.7.2
Limit	:	ETSI EN 300 328 V2.1.1, Clause 4.3.1.8.3
Test Result	:	Pass

5.4.1 E.U.T. Operation

Environmental Conditions:

Temperature:		25°C
Humidity		49%RH
Test Mode:		
Input Voltage		DC 3.3V
Operating mode		Transmit mode
Remark	:	Pre-Scan has been conducted to determine the worst-case mode from all available modulations. Modulation type GFSK was selected for the final test.

5.4.2 Test Result

Modulation Type	Test Condition	Test Channel	OBW (MHz)	FL@OBW	FH@OBW	Verdict
GFSK	TNVN	2402MHz	0.87619	2401.523065		Pass
GFSK	TNVN	2480MHz	0.87362		2480.39559	Pass

Test Graphs:

Occupied Channel Bandwidth_TNVN_GFSK_2402

Occupied Channel Bandwidth_TNVN_GFSK_2480

5.5 Transmitter unwanted emissions in the out-of-band domain

Test Requirement	ETSI EN 300 328 V2.1.1, Clause 4.3.1.9
Test Procedure	ETSI EN 300 328 V2.1.1, Clause 5.4.8.2
Limit	ETSI EN 300 328 V2.1.1, Clause 4.3.1.9.3
Test Result	Pass

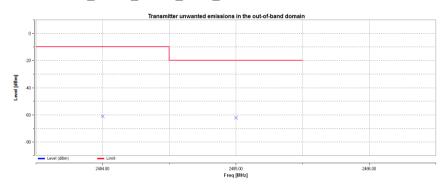
5.5.1 E.U.T. Operation

Environmental Conditions:

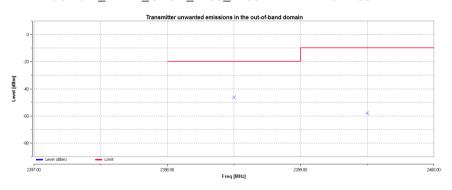
Temperature	25°C
Humidity	49%RH
Test Mode:	
Input Voltage	DC 3.3V
Operating mode	Transmit mode
Remark	Pre-Scan has been conducted to determine the worst-case mode from all available modulations. Modulation type GFSK was selected for the final test.

5.5.2 Test Result

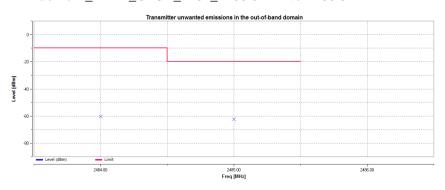
Modulation Type	Test Condition	Test Channel	Frequency (MHz)	Result (dBm)	Limit (dBm)	Verdict
GFSK	TNVN	2402	2398.500	-58.11	<=-20	Pass
GFSK	TNVN	2402	2399.500	-56.50	<=-10	Pass
GFSK	TNVN	2402	2484.000	-61.05	<=-10	Pass
GFSK	TNVN	2402	2485.000	-62.20	<=-20	Pass
GFSK	TNVN	2480	2398.500	-46.44	<=-20	Pass
GFSK	TNVN	2480	2399.500	-58.03	<=-10	Pass
GFSK	TNVN	2480	2484.000	-60.33	<=-10	Pass
GFSK	TNVN	2480	2485.000	-62.35	<=-20	Pass



Test Graphs:



Transmitter unwanted emissions in the OOB domain_TNVN_GFSK_2402_2400MHz-2BW to 2400MHz


Transmitter unwanted emissions in the OOB domain_TNVN_GFSK_2402_2483.5MHz to 2483.5MHz+2BW

Transmitter unwanted emissions in the OOB domain TNVN GFSK 2480 2400MHz-2BW to 2400MHz

Transmitter unwanted emissions in the OOB domain_TNVN_GFSK_2402_2483.5MHz to 2483.5MHz+2BW

5.6 Transmitter unwanted emissions in the spurious domain

Test Requirement	ETSI EN 300 328 V2.1.1, Clause 4.3.1.10
Test Procedure	ETSI EN 300 328 V2.1.1, Clause 5.4.9.2
Limit	ETSI EN 300 328 V2.1.1, Clause 4.3.1.10.3, Table 4
Test Result	Pass

5.6.1 E.U.T. Operation

Environmental Conditions:

Temperature	:	25°C
Humidity	:	49%RH
Test Mode:		
Input Voltage		DC 3.3V
Operating mode		Transmit mode
Remark	:	Pre-Scan has been conducted to determine the worst-case mode from all available modulations. Modulation type GFSK was selected for the final test.

5.6.2 Test Result

	Dession	Turn	RX An	tenna		Substitute	d	Alexalista		
Frequency (MHz)	Receiver Reading (dBµV)	table Angle (°)	Height (m)	Polar (H/V)	SG Level (dBm)	Cable (dB)	Antenna Gain (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
				TX_TN	VN_GFSK	(_2402				
780.10	23.51	143	1.1	Н	-72.92	0.20	0.00	-72.72	-54	-18.72
780.10	23.19	103	1.5	V	-73.26	0.20	0.00	-73.06	-54	-19.06
4804.94	52.34	241	1.4	Н	-38.83	2.64	12.70	-48.89	-30	-18.89
4804.94	36.73	203	1.2	V	-51.51	2.64	12.70	-61.57	-30	-31.57
5998.74	30.85	198	1.3	Н	-57.45	2.98	13.00	-67.47	-30	-37.47
5998.74	33.03	149	1.8	V	-55.01	2.98	13.00	-65.03	-30	-35.03
				TX_TN	VN_GFSK	(_2480				
780.05	23.39	130	1.5	Н	-73.04	0.20	0.00	-72.84	-54	-18.84
780.05	22.16	197	1.4	V	-74.29	0.20	0.00	-74.09	-54	-20.09
1984.65	35.83	240	1.9	Н	-57.54	0.35	10.40	-67.59	-30	-37.59
1984.65	36.25	209	1.5	V	-56.03	0.35	10.40	-66.08	-30	-36.08
4956.52	48.63	253	1.5	Н	-40.88	2.72	12.70	-50.86	-30	-20.86
4956.52	29.23	204	1.1	V	-59.61	2.72	12.70	-69.59	-30	-39.59

5.7 Receiver spurious emissions

Test Requirement	ETSI EN 300 328 V2.1.1, Clause 4.3.1.11
Test Procedure	ETSI EN 300 328 V2.1.1, Clause 5.4.10.2
Limit	ETSI EN 300 328 V2.1.1, Clause 4.3.1.11.3, Table 5
Test Result	Pass

5.7.1 E.U.T. Operation

Environmental Conditions:

Temperature	:	25°C
Humidity	:	49%RH
Test Mode:		
Input Voltage	:	DC 3.3V
Operating mode	:	Receive mode
Remark	:	Pre-Scan has been conducted to determine the worst-case mode from all available modulations. Modulation type GFSK was selected for the final test.

5.7.2 Test Result

	Dessions	Turn	RX An	tenna	Ś	Substitute	ed	Abaabuta		
Frequency (MHz)	Receiver Reading (dBµV)	table Angle (°)	Height (m)	Polar (H/V)	SG Level (dBm)	Cable (dB)	Antenna Gain (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
				RX_TN	VN_GFSP	(_2402				
756.07	25.82	132	1.2	Н	-71.53	0.20	0.00	-71.33	-57	-14.33
756.07	22.07	143	1.5	V	-75.08	0.20	0.00	-74.88	-57	-17.88
2661.22	34.67	130	1.4	Н	-58.34	0.45	10.70	-68.59	-47	-21.59
2661.22	29.36	128	1.6	V	-59.56	0.45	10.70	-69.81	-47	-22.81
5601.01	31.68	165	1.7	Н	-57.87	2.87	12.90	-67.90	-47	-20.90
5601.01	28.30	245	1.8	V	-60.81	2.87	12.90	-70.84	-47	-23.84
				RX_TN	VN_GFSP	(_2480				
756.07	23.69	242	1.4	Н	-73.68	0.22	0.00	-73.46	-57	-16.46
756.07	22.63	198	1.9	V	-74.54	0.22	0.00	-74.32	-57	-17.32
2673.49	30.49	146	1.4	Н	-62.22	0.45	10.70	-72.47	-47	-25.47
2673.49	30.82	207	1.5	V	-58.10	0.45	10.70	-68.35	-47	-21.35
3265.11	33.96	263	1.2	Н	-58.40	2.11	12.00	-68.29	-47	-21.29
3265.11	31.83	219	1.5	V	-58.83	2.11	12.00	-68.72	-47	-21.72

5.8 Receiver Blocking

Test Requirement	ETSI EN 300 328 V2.1.1, Clause 4.3.1.12
Test Procedure	ETSI EN 300 328 V2.1.1, Clause 5.4.11.2
Limit	ETSI EN 300 328 V2.1.1, Clause 4.3.1.12.4, table 8
Receiver Category	3
Test Result	Pass
5.8.1 E.U.T. Operation Environmental Conditions:	
•	25°C
Environmental Conditions:	

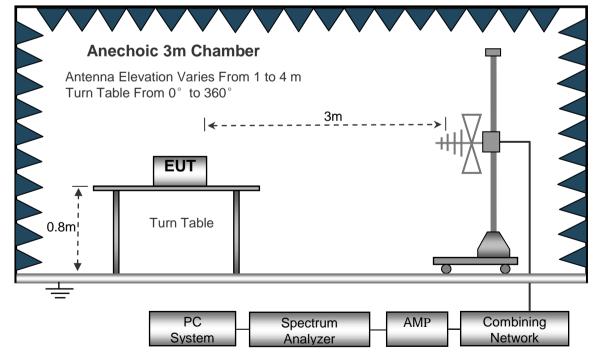
Input Voltage	:	DC 3.3V
Operating mode	:	Receive mode
Remark	:	Pre-Scan has been conducted to determine the worst-case mode from all available modulations. Modulation type GFSK was selected for the final test.

5.8.2 Test Result

Pmin=78.59dBm, Receiver Category: 3							
Modulation Type	Wanted Signal mean Power (dBm)	Blocking Signal Frequency (MHz)	Blocking Signal Power (dB)	Type of Blocking Signal	Measured PER (%)	Limit PER (%)	Performance Criteria
GFSK	P _{min} +12dB	2380	-57	CW	0.039	≤10	Compliance
GFSK	P _{min} +12dB	2503.5	-57	CW	0.051	≤10	Compliance
GFSK	P _{min} +12dB	2300	-47	CW	0.043	≤10	Compliance
GFSK	P _{min} +12dB	2583.5	-47	CW	0.045	≤10	Compliance

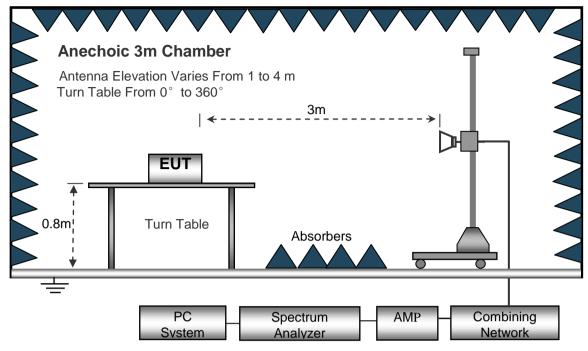
Remark: The minimum performance criterion shall be a PER less than or equal to 10%.

6 EMC Requirements for Emissions


6.1 Radiated Emission

Test Requirement	ETSI EN 301 489-17
Test Method	ETSI EN 301 489-1, EN 55032, Class B
Frequency Range	30MHz to 1GHz, 1GHz to 6GHz
Class/Severity	Class B/ Table A.4 and A.5 of EN 55032
Detector	Peak for pre-scan (120kHz Resolution Bandwidth Below 1GHz; 1MHz Resolution Bandwidth Above 1GHz)
6.1.1 EUT Operation:	
Operating Environment:	
Tomporaturo	23 10

Temperature	23.1°C
Humidity	48.5%RH
Atmospheric Pressure	101.2kPa
EUT Operation:	
Input Voltage	USB 5V or battery 3.7V
Operating Mode	Discharging+BT mode or charging+ BT mode


6.1.2 Test Setup

The radiated emission tests were performed using the setup accordance with the EN 55032. Frequency Range: Below 1 000MHz

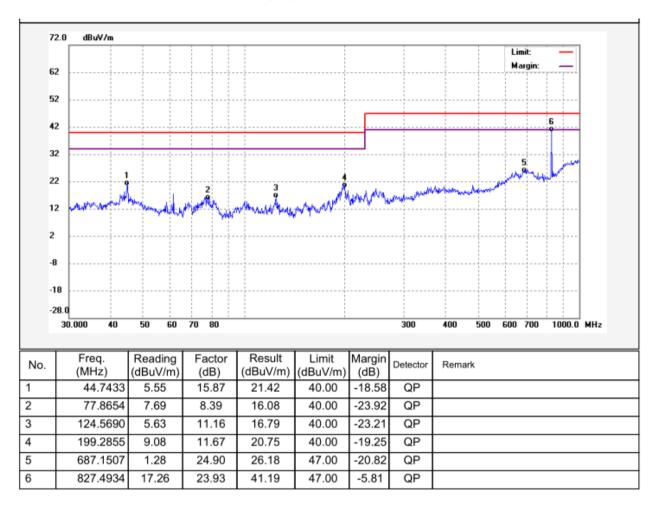
Frequency Range: Above 1 000MHz

6.1.3 Corrected Amplitude & Margin Calculation

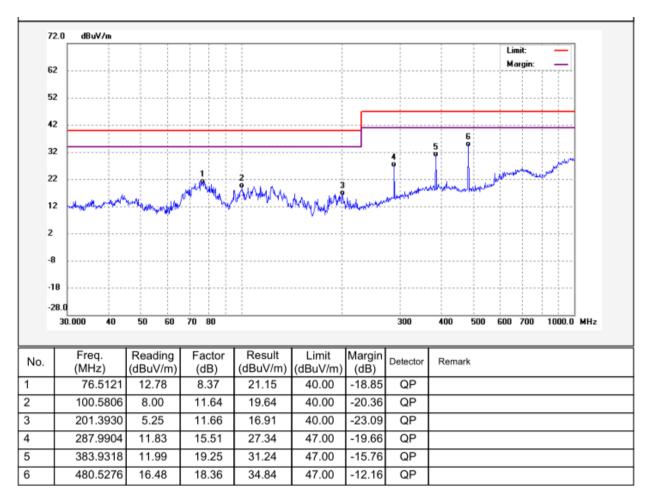
The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

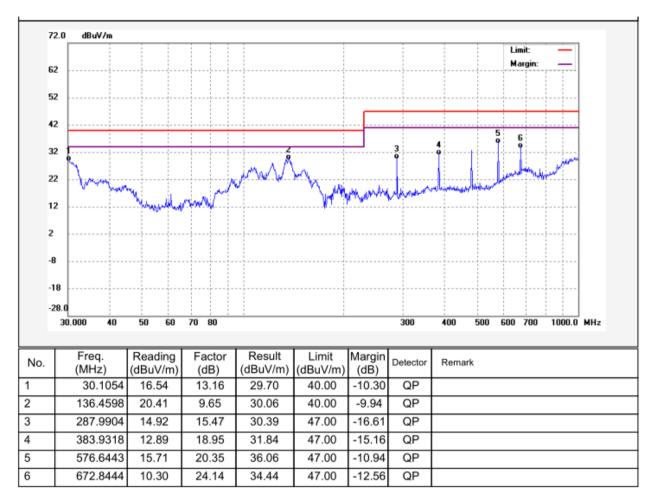
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:


Margin = Corr. Ampl. - Class B Limit

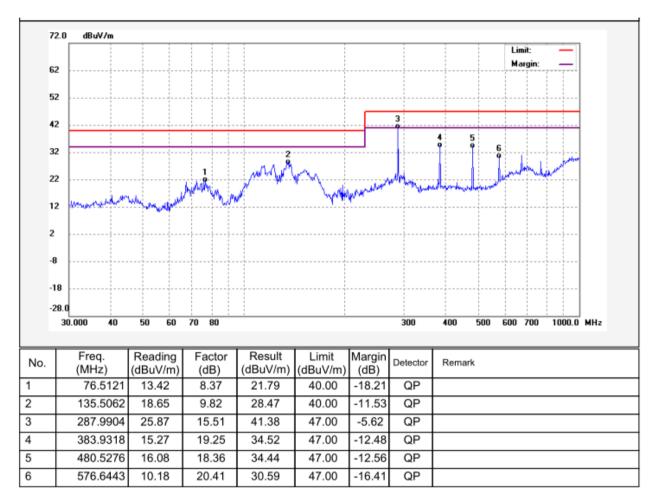
6.1.4 Test Result


Frequency Range: 30MHz ~ 1000MHz

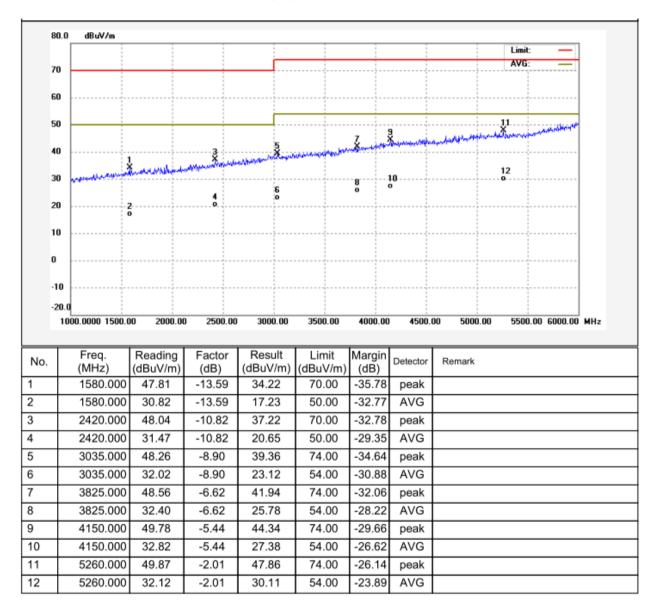
Antenna Polarization: Vertical (Discharging+ BT mode)

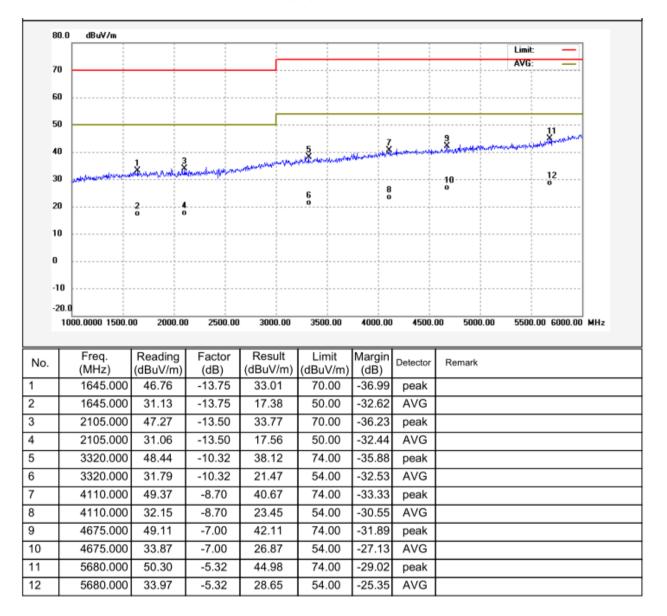


Antenna Polarization: Horizontal (Discharging+ BT mode)

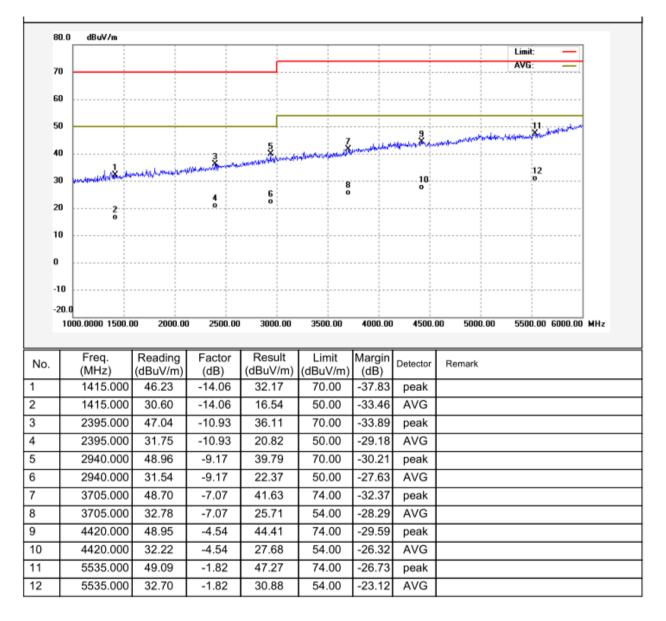


Antenna Polarization: Vertical (Charging+ BT mode)

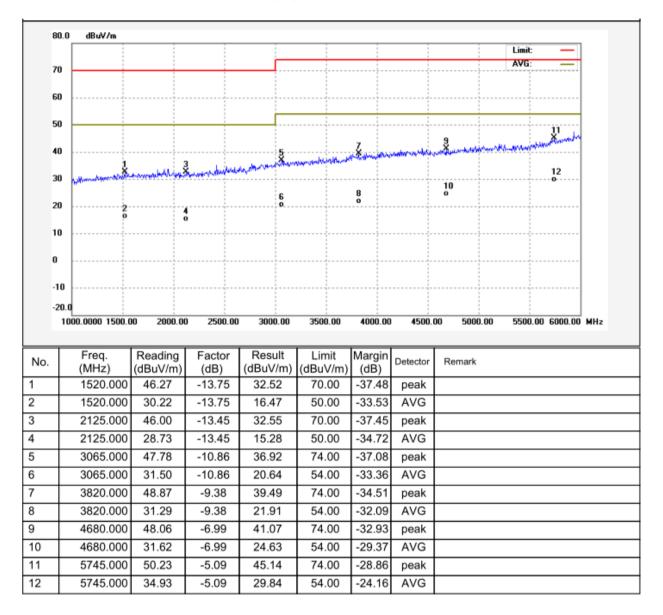

Antenna Polarization: Horizontal (Charging+ BT mode)


Frequency Range: 1000MHz ~ 6000MHz

Antenna Polarization: Vertical (Discharging+ BT mode)



Antenna Polarization: Horizontal (Discharging+ BT mode)



Antenna Polarization: Vertical (Charging+ BT mode)

Antenna Polarization: Horizontal (Charging+ BT mode)

7 EMC Requirement for Immunity

7.1 Performance Criteria

7.1.1 General performance criteria

The performance criteria are:

• performance criteria A for immunity tests with phenomena of a continuous nature;

- performance criteria B for immunity tests with phenomena of a transient nature;
- performance criteria C for immunity tests with power interruptions exceeding a certain time.
- The equipment shall meet the minimum performance criteria as specified in the following clauses.

7.1.2 Performance table

Criteria	During test	After test
	Shall operate as intended.	Shall operate as intended.
	May show degradation of performance	Shall be no degradation of performance (see note 2).
А	(see note 1).	Shall be no loss of function.
	Shall be no loss of function.	Shall be no loss of stored data or user programmable
	Shall be no unintentional transmissions.	functions.
	May show loss of function (one or more).	Functions shall be self-recoverable.
	May show degradation of performance	Shall operate as intended after recovering.
В	(see note 1).	Shall be no degradation of performance (see note 2).
	No unintentional transmissions.	Shall be no loss of stored data or user programmable
		functions.
	May be loss of function (one or more).	Functions shall be recoverable by the operator.
С		Shall operate as intended after recovering.
		Shall be no degradation of performance (see note 2).

NOTE 1:

Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

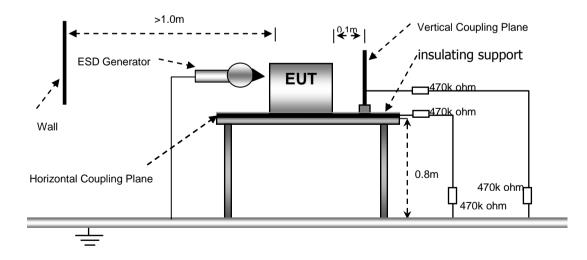
NOTE 2:

No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed.

If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

7.2 Electrostatic Discharge(ESD)

Test Requirement	:	ETSI EN 301 489-17	
Test Method	:	ETSI EN 301 489-1, EN 61000-4-2	
Discharge Impedance	:	330 Ω / 150 pF	
Discharge Voltage	:	Air Discharge: +/-2,4,8 KV Contact Discharge:+/-2,4 kV HCP & VCP: +/-2,4 kV	
Polarity	:	Positive & Negative	
Discharge Repeat Times	:	At Least 20 times at each test point	
Discharge Mode	:	Single Discharge	
Discharge Period	:	1 second minimum	


7.2.1 E.U.T. Operation

Operating Environment:

Temperature	22.1°C
Humidity	53.6%RH
Atmospheric Pressure :	100.1kPa
EUT Operation:	
Input Voltage	USB 5V or battery 3.7V
Operating Mode	Discharging+ BT mode or charging+ BT mode

7.2.2 Block Diagram of Setup

The ESD test was performed in accordance with the EN 61000-4-2.

7.2.3 Test Result

Direct Discharge			Performance Criteria		
Discharge Level (kV)	Performance Criterion	Test Point	Contact Discharge	Air Discharge	
±8	В	1	N/A	Pass*	
±4	В	2	Pass*	N/A	

Remark:

Test points 1. All Exposed Surface & Seams; 2. All metallic part

*

During the test no deviation was detected to the selected operation mode(s)

Indirect Discharge			Performance Criteria	
Discharge Level (kV)	Performance Criterion	Test Point	Horizontal Coupling Vertical Coup	
±4	В	1	Pass*	Pass*

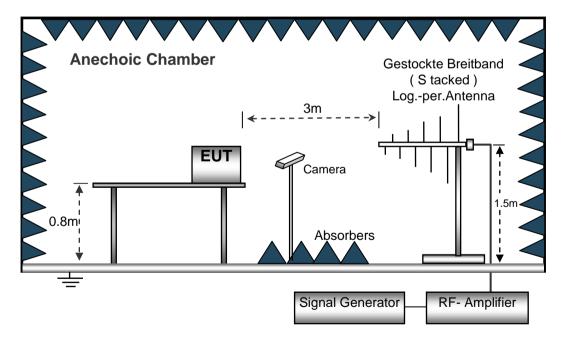
Remark:

Test points 1. All sides

*

During the test no deviation was detected to the selected operation mode(s)

7.3 RF Electromagnetic Field (80MHz to 6 000MHz) (RS)


Test Requirement	ETSI EN 301 489-17
Test Method	ETSI EN 301 489-1, EN 61000-4-3
Face of EUT	Front, Back, Left, Right
Frequency Range	80MHz to 6 000MHz
Test Level	3V/m
Modulation	80%, 1kHz Amplitude Modulation.
Antenna polarisation	Horizontal& Vertical

7.3.1 E.U.T. Operation

Operating Environment:	
Temperature	22.1°C
Humidity	53.6%RH
Atmospheric Pressure	100.1kPa
EUT Operation:	
Input Voltage	USB 5V or battery 3.7V
Operating Mode	Discharging+ BT mode or charging+ BT mode

7.3.2 Block Diagram of Setup

The Radiated Immunity test was performed in accordance with the EN 61000-4-3.

7.3.3 Test Result

Frequency	Face of EUT	Antenna polarisation	Test Level	Step Size	Dwell Time	Performance Criterion	Result
80MHz to 1000MHz	Front, Back, Left, Right	Horizontal	3V/m	1%	1s	A	Pass*
80MHz to 1000MHz	Front, Back, Left, Right	Vertical	3V/m	1%	1s	A	Pass*
1000MHz to 6000MHz	Front, Back, Left, Right	Horizontal	3V/m	1%	1s	A	Pass*
1000MHz to 6000MHz	Front, Back, Left, Right	Vertical	3V/m	1%	1s	A	Pass*

Remark:

* During the test no deviation was detected to the selected operation mode(s)

8 Health Requirements

8.1 Limits

According to Council Recommendation: the criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation.

Reference levels for electric, magnetic and electromagnetic fields (10MHz to 300GHz).

Low-power electronic and electrical equipment is deemed to comply with the provisions of this standard if it can be demonstrated using routes B, C or D that the available antenna power and/or the average total radiated power is less than or equal to the applicable low-power exclusion level Pmax.

Annex A contains example values for Pmax derived from existing exposure limits listed in the bibliography, such as the ICNIRP guidelines [1], IEEE Std C95.1-1999 [2], and IEEE Std C95.1-2005 [3].

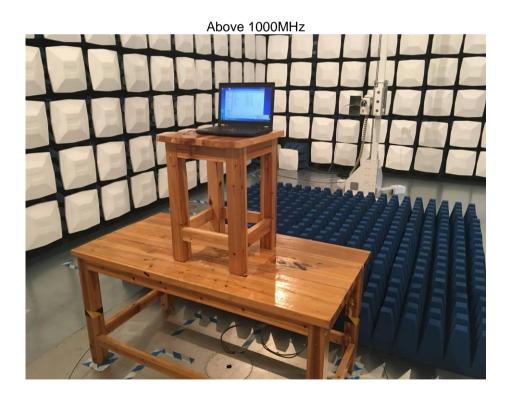
For wireless devices operated close to a person's body with available antenna powers and/or average total radiated powers higher than the Pmax values given in Annex A, the alternative Pmax values (called Pmax'), described in Annex B can also be used.

For low power equipment using pulsed signals, other limits may apply in addition to those considered in Annex A and Annex B. Both ICNIRP guidelines [1] and IEEE standards [2], [3] have specific restrictions on exposures to pulsed fields, and the requirements of those standards with respect to exposure to pulses shall be met. Annex C discusses this topic further.

8.2 Test Result of RF Exposure Evaluation

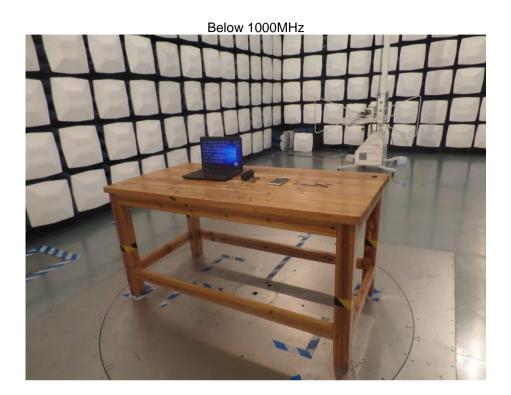
Test Mode	Transmit
Limit (Pmax)	20mW/13dBm

After performed the test at low/middle/high channel, the below recorded is the worst.


The worst e.i.r.p. (dBm)	Pmax(dBm)	Result
-4.29	13	Complies

9 Photographs —Test Setup

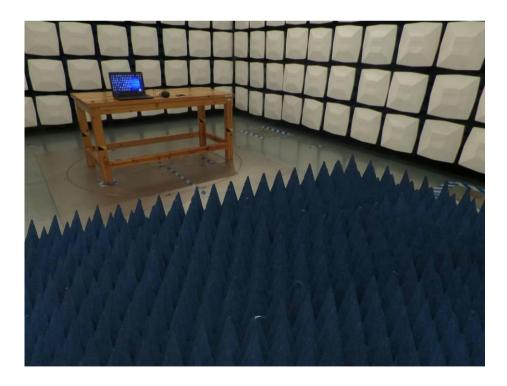
9.1 Photograph – Spurious Emissions Test Setup



Page 43 of 50

9.2 Photograph - Radiated Emissions Test Setup

Above 1000MHz

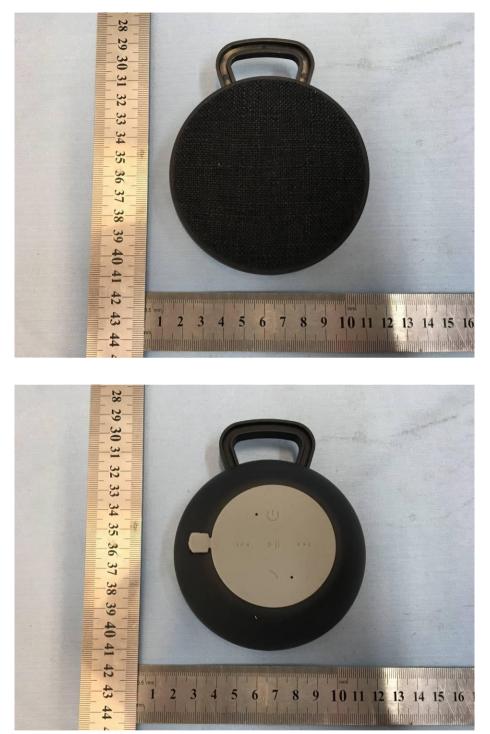


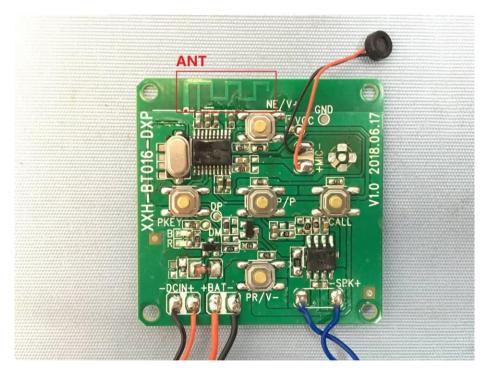
9.3 Photograph - ESD Test Setup

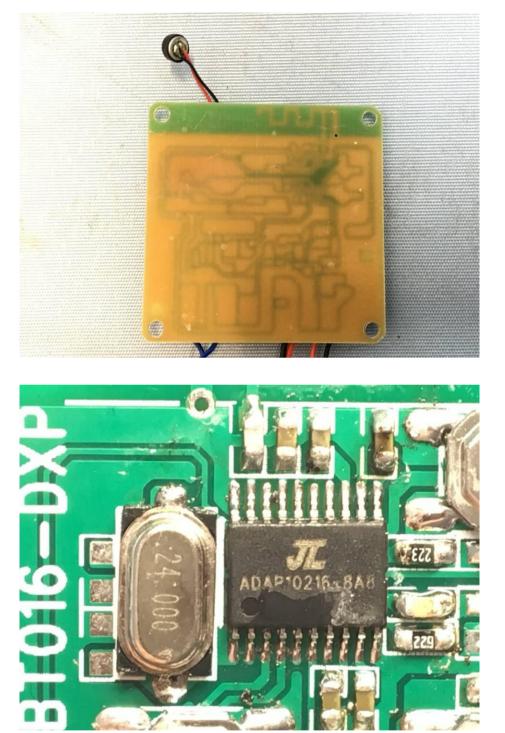
9.4 Photograph - Radio-frequency Common Mode Test Setup

10 Photographs - Constructional Details

10.1 EUT – External Photos







10.2 EUT – Internal Photos

=====End of Report======